

YASKAWA AC Drive Compact Vector Control Drive V1000

200 V CLASS, THREE-PHASE INPUT: 0.1 to 18.5 kW 200 V CLASS, SINGLE-PHASE INPUT: 0.1 to 3.7 kW 400 V CLASS, THREE-PHASE INPUT: 0.2 to 18.5 kW

Certified for ISO9001 and ISO14001

Bringing you the world's smallest* variable speed drive to stand at the top of its class: V1000

Yaskawa has built a reputation for high performance, functionality, quality, and reliability. To make it even easier to optimize your applications, we present the new V1000.

A single drive with so many uses, benefiting your application the more you use it.

So advanced!

*: Results from market research on vector drives performed by Yaskawa

Quick and easy installation, ready to run your application in no time.

<u>ou'll be amazed how simple it is to use</u>

ALM REV DHV FOUT DRUN C 00WARNING Rick of # Read menual before instalting
 Wall 5 minutes for capacitar dis discontenting cower supply To conform to CC requirements, make sure to ground the supply neutral for 400V class Risque de décharge AVERTISSEMENT dre 5 minutes aprile la soupure de l'alime pour permettre la décharge des condemanteurs. Pour reportere aux exigences CE a assurter que resulte poir relie à la terre pour la aéria 405V. RoHS

op performance for its class. Loaded with functions and features in an unbelievably small package!

CONTENTS

Features	4	
Application Benefits	8	
Software Functions	10	
Parameter List	12	
Basic Instructions	16	
Product Lineup	18	
Model Selection	19	
Standard Specifications	20	
Standard Connection Diagram	22	
Dimensions	24	
Fully-Enclosed Design	26	
Peripheral Devices and Options	28	
Application Notes	50	
YASKAWA AC Drive Series	55	
Global Service Network	57	

FLUID MACHINE See page 8.

COMPACT CONVEYOR See page 9.

AUTO SHUTTER

PACKAGING

PUMF

Even more eye-opening versatility.

Delivering the most advanced,

Features

Yaskawa offers solutions customized for your application in an incredibly compact, technologically advanced, environmentally responsible package capable of driving a synchronous motor.

So advanced!

Sensorless Control of PM Motors Capability

Two drives in one

V1000 runs not only induction motors, but synchronous motors like IPM and SPM motors as well. Get a single drive for all your application needs, and save on spare parts.

Note: See product specifications for information on motor precision. The variable torque ratio of synchronous motors is 1 to 10.

Torque (%) 0 3Hz 12Hz 30Hz 60Hz Conventional models -100 -200 duction motor 9)) 30 60 90 6 Frequency (Hz) Standard Drive Increased braking power during deceleration. Faster deceleration time with overexcitation braking.* *: Example shown is for a 400 V 3.7 kW drive without braking resistor. Circumstances depends on the motor and load SPM motor (SMRA series) Normal Deceleration SPM motor Drive DC voltage IPM motor (SSR1 series) Output frequency IPM motor Drive 1275 Output current V1000 Induction motor **Overexcitation Deceleration** DC voltage SPM motor Output frequency EMR1 series 6.4 s SMRD series SMRA series Standard Drive Output current IPM motor (SSR1 series) 50% faster!

Top of Its Class

200

100

Impressive Torque Characteristics

V1000 is the first in its class fully equipped with current vector control. Current Vector control providing a powerful starting torque of 200% at 0.5 Hz* and precise torque limit operations. The motor Auto-Tuning function saves valuable start up time and assures high performance operation at the highest efficiency.

*: Using a Yaskawa induction motor under 3.7 kW set for Heavy Duty torque performance.

simplest, smallest drive of its class.

No more trouble from power loss.

V1000 is fully equipped with speed search and KEB Ride-Thru functions for your application needs, whether running an induction motor or permanent magnet motor.

Speed Search Method

Power supply

Easily restart the motor without cumbersome speed sensors. Perfect for fan, blowers, and other rotating, fluid-type applications.

Voltage Motor speed Output frequency Utput Output Coasting motor

Speed Search performs smooth restart by finding the coasting motors speed.

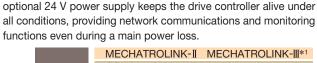
KEB Ride-Thru

Drive continues operation by using motor regen. Perfect for HVAC

Power supply voltage Motor speed Output frequency Output Current

Drive Specialization

Software for High-Frequency Output

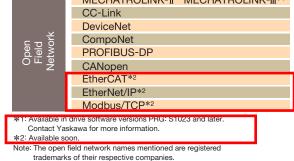

Yaskawa can offer you a drive with custom software with the specific functions required for your machine.

Note: Requires a sensor to detect when power loss occurs. Load conditions may still trip a fault and cause the motor to coas

Customize the Drive

Optional visual programming software lets you instantly customize V1000 to your application. Let the drive do external device or PLC functions! Easy Drag and Drop functions starting from simple timers up to complex application blocks let you create your very own drive.

BEEGEMBEEGEMBEEGERE



The built in high speed RS-422/485 MEMOBUS and a variety of

option units connect V1000 to all popular fieldbus networks. The

So much variation possible

Global Networking

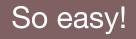
Specialized Types

Finless design, and dust-proof models also available.

Environmentally Friendly

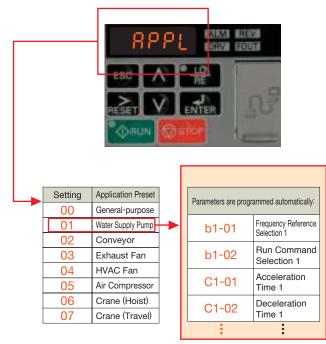
Protecting Against Harsh Environments

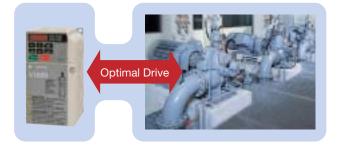
Various products are available to protect your drive against humidity, dust, oil mist, and vibration. Contact Yaskawa for more information.


EU's RoHS Compliance

All V1000 models are fully compliant with the EU's RoHS initiative.

Features


From setup to maintenance, V1000 makes life easy.



Parameters set automatically—hassle free programming!

Start up instantly with application presets!

V1000 automatically sets the parameters needed for various applications. Presets for water supply pumps, conveyor systems, exhaust fans, and other applications program the drive instantly for optimized performance-saving enormous hassle setting up for a test run.

Breeze-Easy Setup

Install Multiple Drive Immediately with the USB Copy Unit

Get several drives up and running easily using the USB copy unit. The same copy unit is fully PC compatible.

Hassle free setting and maintenance straight from a PC

DriveWizard Plus lets you manage the unique settings for all your drives right on your PC.

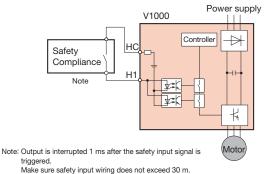
With DriveWizard's preset operation sequences, built-in oscilloscope function, fine tuning the drive and maintenance checks have never been easier.

Sequence Operation

• Drive Replacement Function Saves valuable time during drive set up when replacing or upgrading drives.

 Oscilloscope Function Displays operation status and drive performance in real time.

View and edit drive parameters.

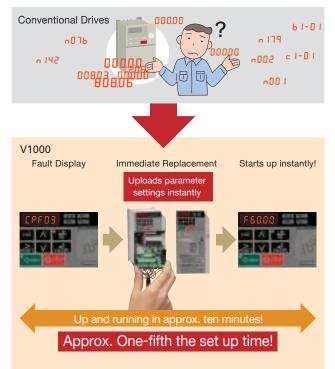


Safety Standard Compliance

TÜV approved

V1000 is the first drive in its class to come standard with safety input features compliant with ISO/EN138 9-1 Cat.3 PLd, IEC/EN61508 SIL2.

Througn compliance with EN60204-1 (stop category 0), V1000 reduces the number of peripheral devices needed to satisfy safety regulations.



Application Example: Safety Compliance

Hassle-Free Maintenance

Less Downtime

The first-ever pluggable terminal board with a Parameter Back-Up function lets you replace a drive instantly in the event of failure. No need to reprogram the replacement drive—an amazingly convenient time saver!

Exceptional Performance Life

Cooling fan and capacitors have an expected performance life of ten years. In addition, Maintenance Monitors keep track of part wear.

Note: Assumes operation conditions of 40°C, 80% rated load, and 24 hour continuous performance. Performance life may vary with operation conditions.

Simple Wiring

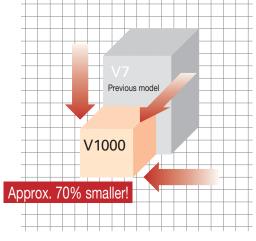
A pluggable terminal block option is available. Screwless terminals do away with time consuming wiring and periodic maintenance to check wire connections, which in turn makes the drive more reliable. Contact Yaskawa for inquires.

Wide Array of Monitors

Monitor functions like output frequency, output current, I/O status and watt hour counter give a clear picture of the drive operation status and helps to keep track of the energy consumption.

Verify Menu

The Verify Menu lists all setting that have been changed from their original default values. This includes parameters changed by Auto-Tuning, Application Presets, and those edited by the technician. This list makes it easy to reference changes to drive setup.

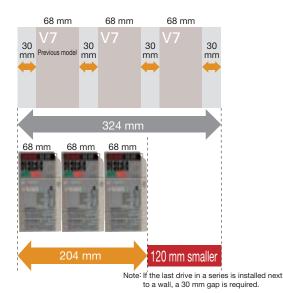

The world's smallest!

The perfect space-saving design

World's Smallest Class

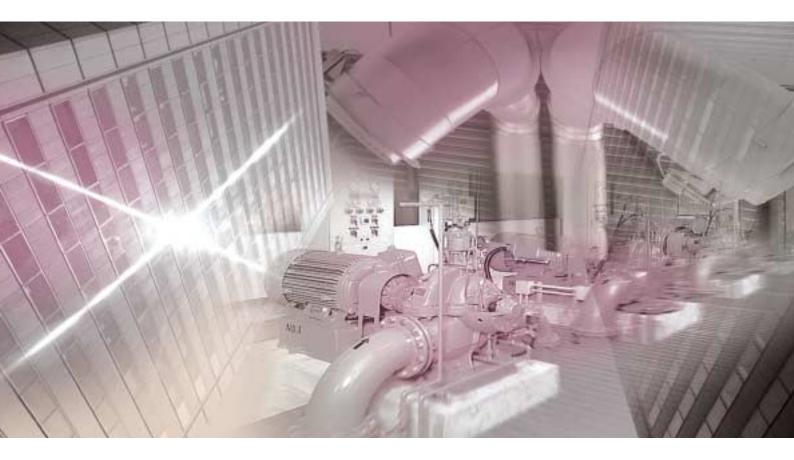
Yaskawa has applied the most advanced thermal simulation technology and top reliability to create the world's smallest compact drive. V1000 reduces the space required up to 70% when compared to our earlier models.

• Compare the size difference of a 200 V 5.5 kW drive with V1000 rated for Normal Duty operation:

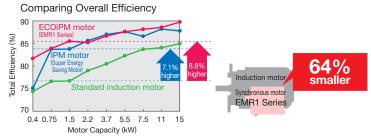


Side-by-Side

V1000 allows for a truly compact installation, requiring minimal space between units even in a tight enclosure.

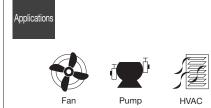

Note: Current derating must be considered.

Example: Side-by-Side installation of 200 V 0.75 kW units



V1000 gets the most out of the application.

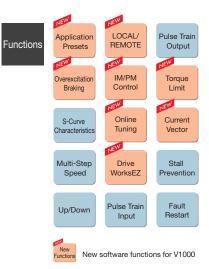
Fluid Applications

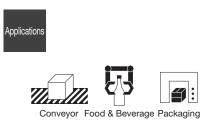

- Selecting "Fan" or "Pump" presets automatically programs V1000 for optimal performance.
- 2 Compact design saves installation space. Use a permanent magnet motor to shrink the installation even further while conserving impressive amounts of energy.

Pulse output provided to keep track of kilowatt hours-- no power meter needed. (Cannot legally be used as proof of power consumption.)

- 4 Speed Search prevents loss from down time by keeping the application running smoothly through a power loss.
- 5 An optional 24 V power supply lets you monitor drive performance from a PLC even when the power goes out.
 - Replace drives immediately and easily thanks to a pluggable terminal board with a built-in Parameter Back-Up function.

6


Advantages



Conveyor, Transport, and Civil Applications

Advantages

- Selecting the "Conveyor" preset automatically programs V1000 for optimal performance.
- 2 Safety input functions standard. Easily complies with various safety regulations.
- **3** Overexcitation braking provides more powerful braking capabilities.
- 4 Easily customize the drive through visual programming with DriveWorksEZ.
- 5 With a variety of communication protocols options available, V1000 can be networked instantly. A separate 24 V power supply is also available, allowing the technician to monitor drive performance from a PLC even when the power goes out.
- 6 IP66 and NEMA 4 Type 1 models are available. Provides water-proof and dust-proof protection and separate installation.

Software Functions

Loaded with software functions just right for your application.

Note: Major functions listed below

New Functions New V1000 software not available for the V7.

Application Presets

No need to struggle with difficult parameters and complex calculations. Parameters are set instantly simply by selecting the appropriate Application Preset.

Functions at Start and Stop

Optimal deceleration without

needing to set the deceleration time. Drive slows the application smoothly controlling DC bus voltage.

Perfect for applications with high load inertia that rarely need to be stopped.

Stop quickly—50% faster without the use of a braking resistor. Note: Stopping times may vary based on motor characteristics.

Halt a coasting motor and start it back up again.

When the direction of a coasting motor is unknown, the drive automatically performs DC Injection to bring the motor to a halt and then start it back up again.

Start a coasting motor.

Automatically brings a coasting motor back to the target frequency without the need for extra speed sensors.

Accelerate and decelerate smoothly with large inertia loads.

Drive prevents speed loss by holding the output frequency at a constant level during acceleration and deceleration.

Switch easily between accel/decel times. Switch acceleration and deceleration rates when running two motors from the same drive, or change accel/decel times when operating at high speed.

Prevent sudden shock when starting and stopping the application.

Drive lets the user fine-tune the S-curve characteristics, allowing for smooth acceleration and deceleration.

Reference Functions

Limit motor speed.

Set speed limits and eliminate the need for extra peripheral devices and extraneous hardware.

Easily program a speed sequence with multiple steps.

Set up to 17 separate speeds to create a speed sequence for the application. The drive can easily be connected to a PLC and allow for a simple positioning with limit switches.

Skip over troublesome resonant frequencies.

Drive can be programmed to avoid machine resonance problems by avoiding constant speed operation at certain speeds.

Improved operability.

Momentarily hold the operating frequency during acceleration or deceleration as the load is lowered or raised.

Improved operability.

Raise or lower the frequency reference using a remote switch.

Switch between remote operating locations.

Easily switch between controlling the drive directly with the keypad or from a control panel at some remote location.

Functions for Top Performance

Run both IM and PM motors with a single drive.

The most advanced motor drive technology can run both IM and PM motors, allowing for even greater energy savings and a more compact setup.

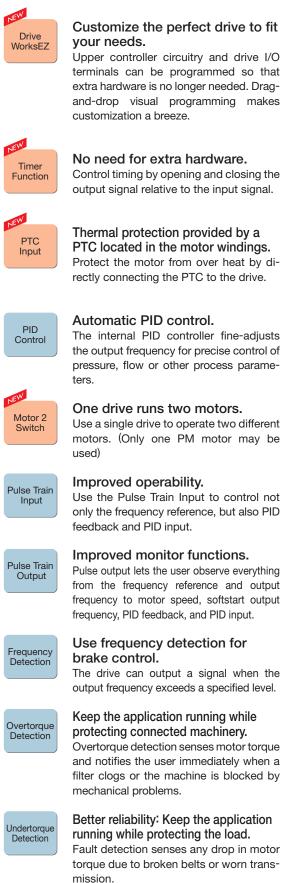
No extra watt hour meter needed.

A pulse output lets the user monitor power consumption. (Cannot legally be used as proof of power consumption)

Automatically runs at top efficiency.

The drive supplies voltage to the motor relative to the speed and load so that the application is for operating at the most efficient level.

Current


Vector

Enables high-precision operation.

Automatically adjusts resistance between motor conductors during operation, thus improving speed accuracy when there are motor temperature fluctuations. This function is active only for Open Loop Vector Control.

Achieve high levels of performance.

The drive comes with current vector control capabilities for high performance applications.

Better reliability: Keep the application running while protecting the load. V1000 helps protect your application by restricting the amount of torque the motor can create.

Protective Functions

Keep running even during a momentary loss in power.

V1000 automatically restarts the motor and keeps the application going in the event of a power loss.

Decelerate to stop when the power goes out.

V1000 uses regenerative energy from the motor to bring the application to a stop, rather than simply letting it coast.

Better reliability: Keep the application running while protecting the load.

Keeps the machine running by preventing motor stall caused by motor overload or rapid speed changes.

Avoid overvoltage trip.

Effective for punching presses and crank shafts where repetitive motion creates large amounts of regenerative energy. The drive increases or decreases the frequency in correspondence with regen levels to prevent overvoltage from occurring.

Better reliability for continuous operation.

The drive can keep running at the most recent frequency reference it was given in the event that the upper controller should fail. An absolute must for HVAC systems.

Keep running when a fault occurs. V1000 has full self-diagnostic features and can restart the application in the event of a fault. Up to 10 restarts possible.

The following code is used to indicate whether a parameter is available in a certain control mode or not.

S: Available in the Setup Mode and the Parameter Setting Mode. \bigcirc : Available in the Parameter Setting Mode. \times : Not available in this control mode

					Con	trol M	lode
Function	No.	Name	Range	Def*1	V/f	OLV	PM
ers	A1-00*2	Language Selection	0 to 7	*1	0	0	0
lete	A1-01	Access Level Selection	0 to 2	2	0	0	0
ran	A1-02	Control Method Selection	0,2,5	0	S	S	S
Ра		Initialize Parameters	0 to 5550	0	0	0	0
tion	A1-04	Password 1	0 to 9999	0	0	0	0
liza	A1-05*3		0 to 9999	0	0	0	0
itia	A1-06	Application Preset	0 to 8	0	0	0	0
	A1-07	DriveWorksEZ Function Selection	0 to 2	0	0	0	0
Parameters Initialization Parameters	A2-01 to A2-32	User Parameters, 1 to 32	b1-01 to o2-08	-	0	0	0
Para	A2-33	User Parameter Automatic Selection	0,1	1	0	0	0
	b1-01	Frequency Reference Selection 1	0 to 4	1	S	S	S
ы	b1-02	Run Command Selection 1	0 to 3	1	S	S	S
ecti	b1-03	Stopping Method Selection	0 to 3	0	S	S	S
Sele	b1-04	Reverse Operation Selection	0,1	0	0	0	0
e o	b1-07	LOCAL/REMOTE Run Selection	0,1	0	0	0	0
100	L1 00	Run Command Selection	0.44 0	0			0
Operation Mode Selection	b1-08	while in Programming Mode	0 to 2	0	0	0	
atic	b1-14	Phase Order Selection	0,1	0	0	0	0
ber	b1-15	Frequency Reference 2	0 to 4	0	0	0	0
ō	b1-16	Run Command Source 2	0 to 3	0	0	0	0
	b1-17	Run Command at Power Up	0,1	0	0	0	0
g	b2-01	DC Injection Braking Start Frequency		0.5 Hz	0	0	0
kin	b2-02	DC Injection Braking Current	0 to 75	50%	0	0	0
DC Injection Braking	b2-03	DC Injection Braking Time/DC Excitation Time at Start	0.00 to 10.00	0.00 s	0	0	0
Stio	b2-04	DC Injection Braking Time at Stop	0.00 to 10.00	0.50 s	0	0	×
jec	b2-08	Magnetic Flux Compensation Capacity	0 to 1000	0%	×	Õ	×
5	b2-12	Short Circuit Brake Time at Start	0.00 to 25.50	0.00 s	×	×	0
ŏ	b2-12	Short Circuit Brake Time at Stop	0.00 to 25.50	0.50 s	×	×	Õ
	b3-01	Speed Search Selection	0.00 10 20.00	0.000	0	0	Õ
	b3-02	Speed Search Deactivation Current	0 to 200	120	0	Õ	×
	b3-03	Speed Search Deceleration Time	0.1 to 10.0	2.0 s	0	0	×
	b3-05	Speed Search Delay Time	0.0 to 100.0	0.2 s	0	0	Ô
		Output Current 1 during		dep. on			
	b3-06	Speed Search	0.0 to 2.0	drive capacity	0	0	×
_	b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	0.00 to 6.00	* 4	0	0	0
earch	b3-08 b3-10	Search (Speed Estimation Type) Speed Search Detection	0.00 to 6.00 1.00 to 1.20	* 4 1.05	0	0	○ ×
ed Search	b3-10	Search (Speed Estimation Type)	1.00 to 1.20	1.05	0	0	×
Speed Search		Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection					
Speed Search	b3-10	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level	1.00 to 1.20	1.05	0	0	×
Speed Search	b3-10 b3-14	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart	1.00 to 1.20 0,1	1.05 0	0	0	×
Speed Search	b3-10 b3-14 b3-17	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart	1.00 to 1.20 0,1 0 to 200	1.05 0 150%	0 0	0	× × ×
Speed Search	b3-10 b3-14 b3-17 b3-18	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00	1.05 0 150% 0.10 s	0 0 0	0 0 0	× × × ×
Speed Search	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1	1.05 0 150% 0.10 s 3 0			× × × × ×
Speed Search	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Retry Interval Time	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.00 to 30.0	1.05 0 150% 0.10 s 3 0 0.5 s	0 0 0	0 0 0	× × × × × ×
	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Retry Interval Time Speed Search Induced Voltage Level	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10	1.05 0 150% 0.10 s 3 0 0.5 s 10%	0 0 0 0 0 0 x	0 0 0 0 0 0 0 0 0 x	× × × × × 00
	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Retry Interval Time Speed Search Induced Voltage Level Timer Function On-Delay Time	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.00 to 30.0	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s	0 0 0 0 0 0 0 0 0 0 7	0 0 0 0 0 0 0 0 0 0 0 0 0	× × × × × × 0
Timer Function	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Retry Interval Time Speed Search Induced Voltage Level Timer Function On-Delay Time Timer Function Off-Delay Time	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10 0.0 to 300.0 0.0 to 300.0	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s	0 0 0 0 0 0 x	0 0 0 0 0 0 0 0 0 x	x x x x x 000
	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Restry Interval Time Speed Search Induced Voltage Level Timer Function On-Delay Time PID Function Setting	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 to 30.0 0 to 10 0.0 to 300.0 0 to 4	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s 0.0 s	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 00000
	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01 b5-02	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time Timer Function Off-Delay Time PID Function Setting Proportional Gain Setting (P)	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10 0.0 to 300.0 0.0 to 300.0	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s	0 0 0 0 0 0 0 0 0 x 0	0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 0000
	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01 b5-02 b5-03	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time Timer Function Off-Delay Time PID Function Setting Proportional Gain Setting (P) Integral Time Setting (I)	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10 0.0 to 300.0 0 to 4 0.00 to 25.00 0.0 to 360.0	1.05 0 150% 0.10 s 3 0.5 s 10% 0.0 s 0.0 s 0.0 s 0.0 s 0.1.00 1.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 00000
	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01 b5-02	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time Timer Function Off-Delay Time PID Function Setting Proportional Gain Setting (P)	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10 0.0 to 300.0 0.0 to 300.0 0 to 4 0.00 to 25.00	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s 0.0 s 0 1.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 000000
	b3-10 b3-14 b3-17 b3-18 b3-24 b3-25 b3-29 b4-01 b3-02 b5-01 b5-02 b5-03 b5-04	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Retry Interval Time Speed Search Retry Interval Time Speed Search Induced Voltage Level Timer Function On-Delay Time Timer Function Off-Delay Time PID Function Setting Proportional Gain Setting (P) Integral Time Setting (I) Integral Limit Setting Derivative Time (D)	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10 0.0 to 300.0 0 to 4 0.00 to 25.00 0.0 to 300.0 0.0 to 300.0 0.0 to 300.0 0.0 to 300.0 0.0 to 4 0.00 to 25.00 0.0 to 100.0 0.0 to 300.0 0.0 to 100.0 0.0 to 100.0 0.0 to 100.0 0.0 to 100.0 0.0 to 100.0 0.0 to 100.0 0.0 to 300.0 0.0 to 300.0 0.0 to 40.0 0.0 to 300.0 0.0 to 40.0 0.0 to 300.0 0.0 to 40.0 0.0 to 300.0 0.0 to 300.0 0.0 to 40.0 0.0 to 300.0 0.0 to 100.0 0.0 to 300.0 0.0 to 100.0 0.0 to 100.0 0.0 to 300.0 0.0 to 100.0 0.0 t	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s 0 1.00 1.0 s 100.0% 0.00 s	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x x 0000000
	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b3-02 b5-01 b5-02 b5-03 b5-04 b5-04 b5-05	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Rethod Selection Speed Search Rethod Selection Speed Search Rethod Selection Speed Search Rethod Selection Speed Search Induced Voltage Level Timer Function On-Delay Time Fiber Function Off-Delay Time PID Function Setting Proportional Gain Setting (P) Integral Time Setting (I)	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0,0 to 30.0 0,0 to 300.0 0,0 to 100.0 0,00 to 10.00 0,00 to 10.00	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s 0 1.00 1.00 s 100.0%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 0000000000000000000000000000
	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01 b5-02 b5-03 b5-04 b5-05 b5-06	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time FID Function Setting Proportional Gain Setting (P) Integral Time Setting (D) Integral Limit Setting Derivative Time (D) PID Output Limit PID Offset Adjustment	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10 0.0 to 300.0 0.0 to 100.0 0.0 to 10.00 0.00 to 10.00 0.00 to 10.00 0.00 to 10.00 0.00 to 10.00 0.00 to 10.00	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s 0 1.00 1.0 s 100.0% 0.00 s	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 0000000000000000000000000000
Function	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b5-02 b5-01 b5-02 b5-03 b5-04 b5-05 b5-06 b5-07	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time Timer Function On-Delay Time Timer Function Setting Proportional Gain Setting (P) Integral Time Setting Derivative Time (D) PID Output Limit PID Ottput Limit PID Primary Delay Time Constant	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10 0.0 to 300.0 0 to 4 0.00 to 25.00 0.0 to 360.0 0.0 to 360.0 0.0 to 100.0 0.0 to 100.0 - 100.0 to 100.0 - 100.0 to 100.0	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 1.00 1.00 1.00 1.00% 0.00%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x 000000000000000000000000000000
Function	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01 b5-02 b5-03 b5-04 b5-05 b5-06 b5-06 b5-07 b5-08	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time FID Function Setting Proportional Gain Setting (P) Integral Time Setting (D) Integral Limit Setting Derivative Time (D) PID Output Limit PID Offset Adjustment	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10 0.0 to 300.0 0 to 4 0.00 to 25.00 0.0 to 360.0 0.0 to 100.0 0.0 to 100.0 0.0 to 100.0 0.0 to 10.00 0.0 to 10.00 0,1	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s 0.0 s 1.00 1.00 1.00 100.0% 0.0% 0.0% 0.0%		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 0000000000000000000000000000
Function	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01 b5-02 b5-03 b5-04 b5-05 b5-06 b5-07 b5-08 b5-09	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time PiDer Search Induced Voltage Level Timer Function On-Delay Time PID Function Setting Proportional Gain Setting (P) Integral Time Setting (I) Integral Limit Setting Derivative Time (D) PID Output Limit PID Offset Adjustment PID Primary Delay Time Constant PID Output Level Selection	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10 0.0 to 300.0 0 to 4 0.00 to 25.00 0.0 to 360.0 0.0 to 360.0 0.0 to 100.0 0.0 to 100.0 - 100.0 to 100.0 - 100.0 to 100.0	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s 0.0 s 100.0% 0.00 s 100.0% 0.00 s 0.00 s 0.00 s		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 0000000000000000000000000000
Function	b3-10 b3-14 b3-17 b3-18 b3-24 b3-25 b3-29 b4-01 b3-02 b5-01 b5-02 b5-03 b5-04 b5-05 b5-06 b5-07 b5-08 b5-09 b5-10	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time Fiber Search Induced Voltage Level Timer Function Off-Delay Time PID Function Setting Proportional Gain Setting (P) Integral Time Setting (I) Integral Limit Setting Derivative Time (D) PID Output Limit PID Offset Adjustment PID Primary Delay Time Constant PID Output Level Selection PID Output Gain Setting PID Output Reverse Selection PID Feedback Reference	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0.0 to 30.0 0 to 10 0.0 to 300.0 0 to 4 0.00 to 25.00 0.0 to 100.0 0.0 to 100.0 -100.0to +100.0 0.01 to 10.00 0,1 0.00 to 25.00	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0 1.00 s 100.0% 0.00 s 100.0% 0.00% 0.00 s 0 0.00 s 0 0.00 s 0 0.00 s		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 0000000000000000000000000000
	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b5-02 b5-01 b5-02 b5-03 b5-04 b5-05 b5-06 b5-07 b5-08 b5-09 b5-10 b5-11 b5-12	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Rethod Selection Speed Search Induced Voltage Level Timer Function On-Delay Time Piner Function Off-Delay Time PID Function Setting Proportional Gain Setting (P) Integral Time Setting (I) Integral Time Setting (I) PID Output Limit PID Offset Adjustment PID Ortput Level Selection PID Output Level Selection PID Output Gain Setting PID Output Gain Setting PID Output Gain Setting	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0,0 to 30.0 0 to 10 0,0 to 300.0 0,0 to 10.00 0,0 to 5 0,1 0 to 5	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s 0.0 s 100.0% 0.00 s 100.0% 0.00 s 0.00 s 0.00 s 0.00 s 0.00 s		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 0000000000000000000000000000
Timer Function	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b5-02 b5-01 b5-02 b5-03 b5-04 b5-05 b5-06 b5-07 b5-08 b5-09 b5-10 b5-11	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Method Selection Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time PiDe Speed Search Restring (P) Integral Time Setting (P) Integral Time Setting (D) Proportional Gain Setting Derivative Time (D) PID Output Limit PID Offset Adjustment PID Output Level Selection PID Output Gain Setting PID Output Reverse Selection PID Feedback Reference Missing Detection Selection PID Feedback Loss Detection Level PID Feedback Loss Detection	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0 to 10 0 to 10 0 to 30.0 0 to 10 0.0 to 300.0 0 to 300.0 0 to 4 0.00 to 25.00 0.0 to 100.0 -100.0to 100.0 0.0 to 100.0 0.0 to 100.0 0.0 to 100.0 0.0 to 100.0 0.0 to 100.0 0.0 to 25.00 0,1 0.0 to 25.00 0,1	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0 0.0 s 0 0.00 s 0.00 s 0.00% 0.0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x 000000000000000000000000000000
Timer Function	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01 b5-02 b5-04 b5-03 b5-04 b5-05 b5-06 b5-07 b5-08 b5-09 b5-10 b5-11 b5-12 b5-12	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time PiDe Starch Method Selection PID Function Setting Proportional Gain Setting (P) Integral Time Setting (I) Integral Limit Setting Derivative Time (D) PID Output Limit PID Offset Adjustment PID Output Level Selection PID Output Reverse Selection PID Output Reverse Selection PID Feedback Reference Missing Detection Selection Level	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0,1 0 to 30.0 0 to 10 0.0 to 300.0 0 to 300.0 0 to 4 0.00 to 25.00 0.0 to 10.00 0.00 to 10.00 0.00 to 10.00 0.00 to 10.00 0.01 to 10.00 0,1 0.00 to 5.00 0,1 0 to 5 0 to 100 0 to 100 0 to 5 0 to 100 0 to 100 0 to 100 0,1 0 to 5 0 to 100 0 to 100 0 to 100 0,1 0 to 5 0 to 100 0,1 0 to 5 0 to 100 0,1 0 to 5 0 to 100 0,1 0 to 5 0 to 100 0,1 0 to 100 0,1 0,1 0,1 0,1 0,1 0,1 0,1	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0 1.00 1.00 s 100.0% 0.00 s 100.0% 0.00 s 0.00 0 0.00 s 0.00 0 0.00 s 0.00 0 0.00 s 0.00 0 0.00 0 0.00 s 0.00 0 0.00 s 0.00 0 0.00 s 0.00 0 0.00 s 0.00		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 0000000000000000000000000000
Function	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01 b5-02 b5-03 b5-04 b5-03 b5-04 b5-05 b5-06 b5-07 b5-08 b5-09 b5-10 b5-11 b5-12 b5-13 b5-14 b5-15	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Rethod Selection Speed Search Method Selection Speed Search Method Selection Speed Search Rethol Nethod Speed Search Rethol Speed Search Rethol Nethol Speed Search Rethol PlD Function Setting PlD Output Limit PlD Output Level Selection PlD Feedback Reference Missing Detection Selection PlD Feedback Loss Detection PlD Feedback Loss Detection Time PlD Sleep Function Start Level	1.00 to 1.20 0,1 0 to 2000 0.00 to 1.00 0 to 10 0 to 30.0 0 to 30.0 0 to 300.0 0 to 300.0 0 to 300.0 0 to 300.0 0 to 300.0 0.0 to 300.0 0.0 to 300.0 0.0 to 300.0 0.0 to 10.00 0.0 to 10.00 0.0 to 10.00 0.0 to 10.00 0.0 to 10.00 0.0 to 5.00 0 to 5 0 to 100 0.0 to 5.5 0.0 to 400.0	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0 1.00 1.00 s 100.0% 0.00 s 100.0% 0.00 s 0.00 s 0 0.00 s 0 0.00 s 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x x x x x
Function	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01 b5-02 b5-01 b5-02 b5-03 b5-04 b5-05 b5-06 b5-07 b5-08 b5-06 b5-07 b5-10 b5-11 b5-12 b5-13 b5-14 b5-15 b5-16	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Method Selection Speed Search Interval Time Speed Search Induced Voltage Level Timer Function On-Delay Time Piner Function Off-Delay Time PID Function Setting Proportional Gain Setting (I) Integral Limit Setting Derivative Time (D) PID Output Limit PID Offset Adjustment PID Ortput Gain Setting PID Output Gain Setting PID Feedback Loss Detection PID Feedback Loss Detection PID Feedback Loss Detection PID Feedback Loss Detection Time PID Sleep Function Start Level PID Sleep Delay Time	1.00 to 1.20 0,1 0 to 200 0.00 to 1.00 0 to 10 0 to 10 0 to 30.0 0 to 300.0 0.0 to 10.00 0.0 to 10.00 0.0 to 10.00 0.0 to 10.00 0.0 to 10.00 0.0 to 10.00 0.0 to 5 0 to 100 0.0 to 5 0 to 100 0.0 to 25.5 0.0 to 400.0 0.0 to 25.5	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0 0.0 s 0 1.00 1.00 0.00 s 0 0.00 s 0 0.00 s 0 0.00 s 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x x
Timer Function	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b4-02 b5-01 b5-02 b5-03 b5-04 b5-03 b5-04 b5-05 b5-06 b5-07 b5-08 b5-09 b5-10 b5-11 b5-12 b5-13 b5-14 b5-15	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Method Selection Speed Search Method Selection Speed Search Induced Voltage Level Timer Function On-Delay Time Timer Function On-Delay Time PID Function Setting Proportional Gain Setting Proportional Gain Setting Derivative Time (D) PID Output Limit PID Ortput Level Selection PID Output Level Selection PID Output Reverse Selection PID Feedback Reference Missing Detection Selection PID Feedback Loss Detection Level Selection Seles Function Start Level PID Sleep Function Start Level PID Sleep Delay Time PID Accel/Decel Time	1.00 to 1.20 0,1 0 to 2000 0.00 to 1.00 0 to 10 0 to 30.0 0 to 30.0 0 to 300.0 0 to 300.0 0 to 300.0 0 to 300.0 0 to 300.0 0.0 to 300.0 0.0 to 300.0 0.0 to 300.0 0.0 to 10.00 0.0 to 10.00 0.0 to 10.00 0.0 to 10.00 0.0 to 10.00 0.0 to 5.00 0 to 5 0 to 100 0.0 to 5.5 0.0 to 400.0	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0 1.00 1.00 s 100.0% 0.00 s 100.0% 0.00 s 0.00 s 0 0.00 s 0 0.00 s 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x 0000000000000000000000000000
Function	b3-10 b3-14 b3-17 b3-18 b3-19 b3-24 b3-25 b3-29 b4-01 b5-02 b5-01 b5-02 b5-03 b5-04 b5-05 b5-06 b5-07 b5-08 b5-06 b5-07 b5-08 b5-00 b5-11 b5-11 b5-12 b5-13 b5-14 b5-15 b5-16 b5-17	Search (Speed Estimation Type) Speed Search Detection Compensation Gain Bi-Directional Speed Search Selection Speed Search Restart Current Level Speed Search Restart Detection Time Number of Speed Search Restarts Speed Search Method Selection Speed Search Method Selection Speed Search Method Selection Speed Search Interval Time Speed Search Induced Voltage Level Timer Function On-Delay Time Piner Function Off-Delay Time PID Function Setting Proportional Gain Setting (I) Integral Limit Setting Derivative Time (D) PID Output Limit PID Offset Adjustment PID Ortput Gain Setting PID Output Gain Setting PID Feedback Loss Detection PID Feedback Loss Detection PID Feedback Loss Detection PID Feedback Loss Detection Time PID Sleep Function Start Level PID Sleep Delay Time	1.00 to 1.20 0,1 0 to 2000 0.00 to 1.00 0 to 10 0 to 10 0 to 30.0 0 to 10 0.0 to 300.0 0.0 to 300.0 0.0 to 300.0 0.0 to 300.0 0.0 to 300.0 0.0 to 300.0 0.0 to 100.0 0.0 to 100.0 0.00 to 10.00 0.00 to 10.00 0.01 to 100.0 0.01 to 25.00 0,1 0 to 5 0 to 100 0.0 to 25.5 0 to 25.5 0 to 25.5 0 to 25.5	1.05 0 150% 0.10 s 3 0 0.5 s 10% 0.0 s 0.0 s 0 0.0 s 0 0.00 s 0.00 s 0.0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x

tion					Con	trol M	ode
Function	No.	Name	Range	Def*1	V/f	OLV	PM
<u> </u>	b5-20	PID Setpoint Scaling	0 to 3	1	0	0	0
	b5-34	PID Output Lower Limit	- 100.0 to 100.0	0.0%	0	0	0
		· ·			0	0	0
	b5-35	PID Input Limit	0 to 1000.0	1000.0%			
_	b5-36	PID Feedback High Detection Level	0 to 100	100%	0	0	0
PID Control	b5-37	PID Feedback High Level Detection Time	0.0 to 25.5	1.0 s	0	0	0
ŭ	b5-38	PID Setpoint / User Display	1 to 60000	dep. on	0	0	0
₽	b5-39	PID Setpoint Display Digits	0 to 3	drive	Õ	0	Õ
₽.	00 00	Frequency Reference Monitor	0103	capacity	0		
	b5-40		0,1	0	0	0	0
		Content during PID					
	b5-47	Reverse Operation Selection 2 by PID Output	0,1	1	0	0	0
	b6-01	Dwell Reference at Start	0.0 to 400.0	0.0 Hz	0	0	0
le je	b6-02	Dwell Time at Start	0.0 to 10.0	0.0 s	ŏ	Õ	ŏ
No.	b6-03	Dwell Frequency at Stop	0.0 to 400.0	0.0 Hz	Õ	Õ	Õ
Dwell Function	b6-04	Dwell Time at Stop	0.0 to 10.0	0.0 m2	0	0	0
	b8-01	Energy Saving Control Selection	0,1	0	0	0	×
Ъ	b8-02	Energy Saving Gain	0.0 to 10.0	0.7	×	0	×
avin	b8-03	Energy Saving Control Filter	0.00 to	0.50	×	0	×
Š	20 00	Time Constant	10.00				
gy	b8-04	Energy Saving Coefficient	0.00 to	dep. on	0	×	×
Energy Saving	00-04	Value	655.00	drive capacity			
ш	b8-05	Power Detection Filter Time	0 to 2000	20 ms	0	×	Х
	b8-06	Search Operation Voltage Limit	0 to 100	0%	ŏ	×	×
	C1-01	Acceleration Time 1		270	s	S	S
	C1-01	Deceleration Time 1	1		S	S	S
es							
<u> </u>	C1-03	Acceleration Time 2			0	0	0
	C1-04	Deceleration Time 2			0	0	0
tio	C1-05	Acceleration Time 3			0	0	0
sra	01.00	(Motor 2 Accel Time 1)	0.0 te	10.0 s		\cup	
ele	01.00	Deceleration Time 3	6000.0*5	10.0 5	0	0	0
ec	C1-06	(Motor 2 Decel Time 1)			0		0
Acceleration and Deceleration Times		Acceleration Time 4			-	-	-
nc	C1-07	(Motor 2 Accel Time 2)			0	0	0
u u		Deceleration Time 4					
tio	C1-08				0	0	0
era		(Motor 2 Decel Time 2)					-
ele	C1-09	Fast-Stop Time	0.0 to 6000 0*5	0.0 s	0	0	0
0 Q	C1-10	Accel/Decel Time Setting Units	0.1	1	0	0	0
∣∢	C1-11	Accel/Decel Time Switching Frequency	0.0 to 400.0	0.0 Hz	0	0	0
	C1-14	Accel/Decel Rate Frequency	0.0 to 400.0	0.0 Hz	0	0	0
<u>S</u>	C2-01	S-Curve Characteristic at Accel Start	0.00 to 10.00	0.20 s	0	0	0
nve	C2-02	S-Curve Characteristic at Accel End	0.00 to 10.00	0.20 s	0	0	0
S-Curve Characteristics	C2-03	S-Curve Characteristic at Decel Start		0.20 s	0	0	0
Shar	C2-04	S-Curve Characteristic at Decel End	0.00 to 10.00	0.00 s	ŏ	Õ	ŏ
	C3-01			0.00 3	0	0	×
ч		Slip Compensation Gain	0.0 to 2.5		-	_	
sati	C3-02	Slip Compensation Primary Delay Time		2000 ms	0	0	×
eus	C3-03	Slip Compensation Limit	0 to 250	200%	0	0	×
dm	C3-04	Slip Compensation Selection	0,1	0	0	0	×
p Compensation		during Regeneration					
Slip	C3-05	Output Voltage Limit Operation Selection	0,1	0	Х	0	Х
•	C3-18	Output Voltage Limit Level	70.0 to 100.0	90.0%	Х	0	Х
		Torque Compensation Gain	0.00 to 2.50	1.00	0	0	0
L	C4-02	Torque Compensation Primary Delay Time	0 to 60000	200 ms	0	0	\circ
Torque Compensation	C4-03	Torque Compensation at Forward Start	0.0 to 200.0	0.0%	×	0	×
Torque	C4-04	Torque Compensation at Reverse Start	- 200.0 to 0.0	0.0%	×	0	X
10 To	C4-05	Torque Compensation Time Constant	0 to 200	10 ms	×	0	×
Õ	0100	Torque Compensation Primary	010200	10 1110			
-	C4-06		0 to 10000	150 ms	×	0	Х
	05.01	Delay Time 2	0.00 to 200.00	0.00			~
tro	C5-01	ASR Proportional Gain 1	0.00 to 300.00	0.20	0	×	X
Speed Control (ASR)	C5-02	ASR Integral Time 1	0.000 to 10.000	0.200	0	×	×
ASI	C5-03	ASR Proportional Gain 2	0.00 to 300.00	0.02	0	×	×
))	C5-04	ASR Integral Time 2	0.000 to 10.000	0.050 s	0	×	×
Š	C5-05	ASR Limit	0.0 to 20.0	5.0%	0	×	×
	C6-01	Normal/Heavy Duty Selection	0,1	1	S	S	S
τς Γ	C6-02	Carrier Frequency Selection	1 to B,F		S	S	S
Carrier Frequency	C6-03	Carrier Frequency Upper Limit	1.0 to 15.0	dep. on	Õ	0	Õ
eq	C6-03	Carrier Frequency Lower Limit	0.4 to 15.0	drive	0	×	×
Ŀ				capacity			
	C6-05	Carrier Frequency Proportional Gain	00 to 99		0	×	×
20 8	d1-01	Frequency Reference 1			S	S	S
Frequency Reference	d1-02	Frequency Reference 2	0.00 to	0.00	S	S	S
eq	-14 00	Frequency Reference 3	400.00	Hz	S	S	S
1 m m	d1-03						
шщ	d1-03 d1-04	Frequency Reference 4			S	S	S

Refer to V1000 Technical Manual for details.

Control Mode

*1: Default setting depends on the control mode.

 *2: Parameter setting value is not reset to the default value during drive initialization, A1-03 = 1110, 2220, 3330.
 *3: Parameter A1-05 is hidden from view. To display A1-05, access parameter A1-04 and simultaneously depress the STOP key and the Up arrow key. *4: If A1-02 = 0 or 2, the default setting depends on the capacity of the drive. If A1-02 = 5, the default setting is 0.30.

*5: The accel/decel time setting e determines the value of the units set to C1-10.

Note: For software version PRG 1024 or later. Verify the software version by checking either the nameplate on the drive or parameter U1-25.

Bo. Name Range Def* VI OUV PM d1-05 Frequency Reference 5 0.00 0 <th>uo</th> <th></th> <th></th> <th></th> <th></th> <th>Cor</th> <th>trol M</th> <th>ode</th>	uo					Cor	trol M	ode
	Functio	No.	Name	Range	Def*1			
01-06 Frequency Reference 6 01:09 0 <t< td=""><td></td><td>d1-05</td><td>Frequency Reference 5</td><td></td><td></td><td>0</td><td>0</td><td>0</td></t<>		d1-05	Frequency Reference 5			0	0	0
Bit 1-08 Frequency Reference 8 0.00 to 0.00 to 01-09 Frequency Reference 10 0.00 to 0.00 to 01-11 Frequency Reference 11 400.00 0.00 to 01-13 Frequency Reference 13 0.00 to 0.00 to 01-14 Frequency Reference 16 0.00 to 0.00 to 01-15 Frequency Reference 16 0.00 to 400.00 0.00 to 01-16 Frequency Reference 10 0.00 to 400.00 0.00 to 02-02 Frequency Reference 10 0.00 to 400.00 0.00 to 0.00 02-02 Frequency Reference Lower Limit 0.0 to 110.00 0.00% 0 0 0 03-01 Jump Frequency 1 0.0 to 400.00 0.0 Hz 0 <t< td=""><td></td><td>d1-06</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td></t<>		d1-06				0	0	0
10-08 Frequency Reference 8 0.00 to 0.00 to 11-08 Frequency Reference 10 0.00 to 0.00 to 11-11 Frequency Reference 11 400.00 0.00 to 11-11 Frequency Reference 13 0.00 to 0.00 to 11-13 Frequency Reference 15 0.00 to 0.00 to 11-14 Frequency Reference 15 0.00 to 0.00 to 11-15 Frequency Reference 10 0.00 to 400.00 0.00 to 11-10 Jog Frequency Reference 10 0.00 to 400.00 0.00 to 0.00 to 11-15 Frequency Reference Lower Limit 0.0 to 110.0 0.00 to 400.00 0.00 tz 0.00 to 12-02 0.01 to 400.00 0.01 tz 0.00 to 400.00 0.01 tz 0.00 to 13-02 Jump Frequency 1 0.01 to 400.00 0.01 tz 0.00 to 0.00 to 13-02 Jump Frequency Reference Bias 0.00 to 400.00 0.01 tz 0.00 to 0.00 to 14-04 Arccel/Dacel (Up/Down 2) 0.1 0.1 0.00 to 0.00 to 14-		d1-07	Frequency Reference 7			0	0	0
Image: second	2 Ce						0	0
Image: second	Le l							
Image: second	fe			0.00 to	0.00			
Image: second	Ľ Ľ							
Image: second	l ⊘			400.00	ΗZ		-	
Image: second	en							
Image: second	D D							
Image: second	L P							
d1-17 Jog Frequency Reference 0.00 to 400.00 6.00 Hz S S S d2-07 Frequency Reference Lower Limit 0.0 to 110.0 0.09% O O d2-08 Frequency Reference Lower Limit 0.0 to 110.0 0.09% O O d3-01 Jump Frequency 2 0.0 to 400.0 0.0 Hz O O d3-02 Jump Frequency 2 0.0 to 400.0 0.0 Hz O O d3-03 Jump Frequency 2 0.0 to 400.0 0.0 Hz O O d3-04 Jump Frequency Width 0.0 to 200.0 O O O d4-05 Frequency Reference Bias 0.01 0 O O O d4-06 Frequency Reference Bias 0.1 0 O O O O d4-06 Frequency Reference Bias 0.0 to 0.00% O O O O d4-06 Frequency Reference Bias 0.0 to 0.00% O O O O d4-07 Reference Bias		d1-15	Frequency Reference 15				0	
Big		d1-16	Frequency Reference 16			0	0	0
33-01 Jump Frequency 1 0.010 400.00.0Hz 0.010 400.00.0Hz 0.000 0.0Hz 0.000 0.000 0.000 0.0Hz 0.000 0.0HZ 0.0000 0.0HZ 0.0000 0.0HZ		d1-17	Jog Frequency Reference	0.00 to 400.00	6.00 Hz	S	S	S
33-01 Jump Frequency 1 0.010 400.00.0Hz 0.010 400.00.0Hz 0.000 0.0Hz 0.000 0.000 0.000 0.0Hz 0.000 0.0HZ 0.0000 0.0HZ 0.0000 0.0HZ	pper imits	d2-01	Frequency Reference Upper Limit	0.0 to 110.0	100.0%	0	0	0
33-01 Jump Frequency 1 0.010 400.00.0Hz 0.010 400.00.0Hz 0.000 0.0Hz 0.000 0.000 0.000 0.0Hz 0.000 0.0HZ 0.0000 0.0HZ 0.0000 0.0HZ	wer	d2-02	Frequency Reference Lower Limit	0.0 to 110.0	0.0%	0	0	0
33-01 Jump Frequency 1 0.010 400.00.0Hz 0.010 400.00.0Hz 0.000 0.0Hz 0.000 0.000 0.000 0.0Hz 0.000 0.0HZ 0.0000 0.0HZ 0.0000 0.0HZ	ollo							
03-02 Jump Frequency 2 0.0 to 400.0 0.0 Hz 0 0 03-03 Jump Frequency 3 0.0 to 400.0 0.0 Hz 0 0 03-04 Jump Frequency Reference Hold 0.1 to 20.0 1.0 Hz 0 0 04-01 Frequency Reference Bias 0.00 to 0.00 0 0 0 04-03 Step (Up/Down 2) 99.99 Hz 0 0 0 04-04 Frequency Reference Bias 0.01 to 0 0 0 0 04-05 Frequency Reference Bias -99.9 to 0.0% 0								
Bit Origon Section 1 Construction Selection O,1 O O d4-01 Frequency Reference Bias Step (Up/Down 2) 0,1 0 O O d4-03 Step (Up/Down 2) 99.99 Hz O O O d4-04 Accel/Decel (Up/Down 2) 0,1 0 O O O d4-05 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0,1 0 O O O d4-06 Frequency Reference Bias Operation Mode Selection (Up/Down 2) -100.0 100.0% O O O d4-07 Anlag frequency Reference Bias Outo -99.9 to Up/Dev Limit Selection 0.00% O O O d4-08 Frequency Reference Bias OT-02 Offset Frequency 1 100.00 0.0% O O d4-101 Up/Down Frequency 2 -100.01b-1000 0.0% O O O d4-101 Up/Down Frequency 2 -100.01b-1000 0.0% O O O O d4-101 Up/Down Frequency 2	dΰ							
Bit Origon Section 1 Construction Selection O,1 O O d4-01 Frequency Reference Bias Step (Up/Down 2) 0,1 0 O O d4-03 Step (Up/Down 2) 99.99 Hz O O O d4-04 Accel/Decel (Up/Down 2) 0,1 0 O O O d4-05 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0,1 0 O O O d4-06 Frequency Reference Bias Operation Mode Selection (Up/Down 2) -100.0 100.0% O O O d4-07 Anlag frequency Reference Bias Outo -99.9 to Up/Dev Limit Selection 0.00% O O O d4-08 Frequency Reference Bias OT-02 Offset Frequency 1 100.00 0.0% O O d4-101 Up/Down Frequency 2 -100.01b-1000 0.0% O O O d4-101 Up/Down Frequency 2 -100.01b-1000 0.0% O O O O d4-101 Up/Down Frequency 2	u an							
Bit Origon Section 1 Construction Selection O,1 O O d4-01 Frequency Reference Bias Step (Up/Down 2) 0,1 0 O O d4-03 Step (Up/Down 2) 99.99 Hz O O O d4-04 Accel/Decel (Up/Down 2) 0,1 0 O O O d4-05 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0,1 0 O O O d4-06 Frequency Reference Bias Operation Mode Selection (Up/Down 2) -100.0 100.0% O O O d4-07 Anlag frequency Reference Bias Outo -99.9 to Up/Dev Limit Selection 0.00% O O O d4-08 Frequency Reference Bias OT-02 Offset Frequency 1 100.00 0.0% O O d4-101 Up/Down Frequency 2 -100.01b-1000 0.0% O O O d4-101 Up/Down Frequency 2 -100.01b-1000 0.0% O O O O d4-101 Up/Down Frequency 2	Ξĕ					-	-	
Image: space of the section is a space of the section is a space of the s		d3-04		0.0 to 20.0	1.0 Hz	0	0	0
Image: constraint of the second sec		d4-01		0.1	0	\cap	\circ	\cap
44-03 Step (Up/Down 2) 99.99 Hz 0 0 0 44-04 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0,1 0 0 0 44-06 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0,1 0 0 0 44-06 Frequency Reference Bias Operation Mode Selection (Up/Down 2) -100.0 0.9% 0 0 44-07 Reference Futuation Limit (Up/Down 2) 1010.0 100.0% 0 0 44-08 Frequency Reference Bias Out on Up/Down Frequency 2 0.0 0.0% 0 0 44-09 Lower Limit (Up/Down 2) 0.0 0.0% 0 0 0 44-01 Up/Down Frequency 2 -100.0 tr1000 0.0% 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ľ</td> <td></td>							Ľ	
Step (Up/Down 2) 99.99 Hz - - d4-04 Accel/Decel (Up/Down 2) 0,1 0 0 0 d4-05 Geretion Mode Selection (Up/Down 2) 0,1 0 0 0 d4-05 Frequency Reference Bias -99.9 to 0.0% 0 0 d4-06 Frequency Reference Bias 0.010 100.0% 0 0 d4-07 Reference Fluctuation Limit (Up/Down 2) +100.0 1.0% 0 0 d4-08 Frequency Reference Bias 0.010 100.0% 0 0 0 d4-09 Frequency Reference Bias 0.010 100.0% 0 0 0 d4-09 Frequency Reference Bias 0.01 0 0 0 0 d4-09 Company Reference Bias 0.01 0		d/1-02	Frequency Reference Bias	0.00 to	0.00	\cap		
Big dd-04 Frequency Reference Bias Accel/Decel (Up/Down 2) 0,1 0 0 0 dd-05 Frequency Reference Bias Operation Mode Selection (Up/Down 2) -99.9 to (Up/Down 2) 0,1 0 0 0 dd-06 Frequency Reference Bias Operation Mode Selection (Up/Down 2) -100.0 0.0% 0 0 dd-07 Analog Frequency Reference Bias Upper Limit (Up/Down 2) 100.0 100.0% 0 0 dd-08 Frequency Reference Bias Outpown 2) 0.0 0.0% 0 0 0 dd-10 Up/Down Prequency Reference Lower Limit (Up/Down 2) 0.0 0.0% 0		u4-03	Step (Up/Down 2)	99.99	Hz			
Q4-04 Accel/Decel (Up/Down 2) 0,1 0 0 0 d4-05 Frequency Reference Bias Operation Mode Selection (Up/Down 2) 0,1 0 0 0 d4-06 Frequency Reference Bias (Up/Down 2) -100.0 0.0% 0 0 d4-07 Reference Fluctuation Limit (Up/Down 2) +100.0 1.0% 0 0 d4-08 Frequency Reference Bias Upper Limit (Up/Down 2) 100.0 100.0% 0 0 d4-08 Frequency Reference Bias Upper Limit (Up/Down 2) 0.0 0.0% 0 0 d4-09 Frequency Reference Bias Up/Down Frequency Reference 0,1 0 <td>q</td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td>~</td>	q					~		~
Image: second	우	d4-04		0,1	0	\cup	\cup	O
Image: second	e l	<u> </u>						
Image: second	Ê,	d4-05		0,1	0	0	0	0
Image: second	ere			00.0 to				
Image: second	lefe	d4-06			0.0%	0	0	0
Image: second	Ē							
Image: second	l é	d4-07		0.1 to	1.0%	\cap	\circ	\cap
Image: second	ner	u+ 0/	Reference Fluctuation Limit (Up/Down 2)	+100.0	1.070		\cup	
Image: second	ed	44.00	Frequency Reference Bias	0.0 to	100.00/	\sim		~
d4-09 Frequency Reference Bias Lower Limit (Up/Down 2) -99.9 to 0.0 0.0% 0 0 d4-101 Up/Down Frequency Reference Limit Selection 0,1 0 0 0 d7-01 Offset Frequency 1 -100.01b+1000 0.0% 0 0 0 d7-02 Offset Frequency 2 -100.01b+1000 0.0% 0 0 0 d7-03 Offset Frequency 2 -100.01b+1000 0.0% 0 0 0 d7-03 Offset Frequency 2 -100.01b+1000 0.0% 0 0 0 d7-03 Offset Frequency 2 -100.01b+1000 0.0% 0 0 0 e1-01*2 Input Voltage Setting 155 to 255 d6.0 Hz S <	Ē	04-08	Upper Limit (Up/Down 2)	100.0	100.0%	0		0
04-09 Lower Limit (Up/Down 2) 0.0 0.0% 0 0 d4-10 Up/Down Frequency Reference Limit Selection 0,1 0 0 0 d7-01 Offset Frequency 1 -100.01b+1000 0.0% 0 0 d7-02 Offset Frequency 2 -100.0b+1000 0.0% 0 0 d7-03 Offset Frequency 3 -100.0b+1000 0.0% 0 0 E1-01*2 Input Voltage Setting 155 to 255 dep.on dep.on dep.on dep.on S	1			- 99.9 to		~		~
d4-10 Up/Down Frequency Reference Limit Selection 0,1 0 0 0 0 07-01 Offset Frequency 1 -100010+1000 0.0% 0 0 0 07-02 Offset Frequency 2 -100010+1000 0.0% 0 0 0 0 <td></td> <td>d4-09</td> <td></td> <td></td> <td>0.0%</td> <td>0</td> <td>0</td> <td>0</td>		d4-09			0.0%	0	0	0
d4-10 Limit Selection 0,1 0				0.0			<u> </u>	
		d4-10		0,1	0	0	0	0
38 00 G C	<u> </u>	47.01		100.0 to 1100.0	0.00/	0		
E1-01*2 Input Voltage Setting 155 to 255 dip. or capacity S S S S S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S	enci							
E1-01*2 Input Voltage Setting 155 to 255 dip. or capacity S S S S S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S	₩B					-	-	-
E1-01*2 Input Voltage Setting 155 to 255 drive capacity S S S Signature E1-03 V/f Pattern Selection 0 to F F 0 × E1-04 Max Output Frequency 40.0 to 400.0 60.0 Hz S	<u>ت</u>	d7-03	Offset Frequency 3	-100.0 to +100.0		0	0	0
Signature Interfactor Otor F F O × E1-03 V/f Pattern Selection 0 to F F O × E1-04 Max Output Frequency 40.0 to 400.0 60.0 Hz S S S E1-05*2 Max Output Voltage 0.0 to 255.0 200.0 V S S S E1-06 Base Frequency 0.0 to E1-04 3.0 Hz O O S S S E1-08*2 Mid Output Frequency Voltage 0.0 to E1-04 1.0 Hz S S S S E1-10*2 Minimum Output Freq. Voltage 0.0 to E1-04 0.0 Hz × S S S E1-11*1 Mid Output Frequency 2 0.0 to 255.0 0.0 V × X E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × X E2-01 Motor Rated Current 10 to 200% of drive rated current drive rated current 0 to 100.0 0.0 V × X E2-02 Motor No-Load Current 0 to 10.20.0 0 0		F1-01*2	Input Voltage Setting	155 to 255	dep. on drive	S	S	S
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 S S S E2-02 Motor No-Load Current 0 to less than E2-01 S S X E2-03 Motor Icon-Core Saturation 0.000 to 65.000 dep.on drive capacity > × E2-06 Motor Iron-Core Saturation E2-07 to 0.50 0.50 × × E2-07 Motor Iron-Core Saturation E2-07 to 0.75 0.75 × × E2	<i>"</i>			100 10 200				
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 S S S E2-02 Motor No-Load Current 0 to less than E2-01 S S X E2-03 Motor Icon-Core Saturation 0.000 to 65.000 dep.on drive capacity > × E2-06 Motor Iron-Core Saturation E2-07 to 0.50 0.50 × × E2-07 Motor Iron-Core Saturation E2-07 to 0.75 0.75 × × E2	ţi	E1-03		0 to F	F	0	0	×
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 S S S E2-02 Motor No-Load Current 0 to less than E2-01 S S X E2-03 Motor Icon-Core Saturation 0.000 to 65.000 dep.on drive capacity > × E2-06 Motor Iron-Core Saturation E2-07 to 0.50 0.50 × × E2-07 Motor Iron-Core Saturation E2-07 to 0.75 0.75 × × E2	Lis:	E1-04	Max Output Frequency	40.0 to 400.0	60.0 Hz	S	S	S
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 S S S E2-02 Motor No-Load Current 0 to less than E2-01 S S X E2-03 Motor Icon-Core Saturation 0.000 to 65.000 dep.on drive capacity > × E2-06 Motor Iron-Core Saturation E2-07 to 0.50 0.50 × × E2-07 Motor Iron-Core Saturation E2-07 to 0.75 0.75 × × E2	cte	E1-05*2	Max Output Voltage	0.0 to 255.0	200.0 V	S	S	S
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 S S S E2-02 Motor No-Load Current 0 to less than E2-01 S S X E2-03 Motor Icon-Core Saturation 0.000 to 65.000 dep.on drive capacity > × E2-06 Motor Iron-Core Saturation E2-07 to 0.50 0.50 × × E2-07 Motor Iron-Core Saturation E2-07 to 0.75 0.75 × × E2	rac	E1-06	Base Frequency	0.0 to E1-04	60.0 Hz	S	S	S
E1-08*2 Mid Output Frequency Voltage 0.0 to 255.0 16.0 V × E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Mid Output Frequency 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current than E2-01 S S S E2-02 Motor No-Load Current 0 to less than E2-01 S S X E2-03 Motor Icon-Core Saturation 0.000 to 65.000 dep.on drive capacity > × E2-06 Motor Iron-Core Saturation E2-07 to 0.50 0.50 × × E2-07 Motor Iron-Core Saturation E2-07 to 0.75 0.75 × × E2	ha					-		
E1-09 Minimum Output Freq. 0.0 to E1-04 1.5 Hz S S S E1-10*2 Minimum Output Freq. 0.0 to E1-04 0.0 Hz × E1-11 Mid Output Frequency 2 0.0 to E1-04 0.0 Hz × E1-11*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V × E2-01 Motor Rated Current 10 to 200% of drive rated current S S × E2-02 Motor No-Load Current 0 to less than E2-01 S × × E2-03 Motor No-Load Current 0 to less than E2-01 S × × E2-04 Number of Motor Poles 2 to 48 4 poles × × E2-06 Motor Iron-Core Saturation C.50 0.50 × × E2-07 Motor Iron-Core Saturation 0.50 × ×								
E1-12*2 Mid Output Frequency Voltage 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V S × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V S × E2-01 Motor Rated Current 10 to 200% of dive rated current 10 to 200% of dive rated current S S S × E2-02 Motor No-Load Current 0 to less than E2-01 C × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Iron-Core Saturation Coefficient 1 E2-07 to 0.50 0.50 × × E2-08 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × × × E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 10.0 0.0% × × × E2-10 Motor Iron-Core Saturation Coefficient 3 0.10 to 65.00 dep.on drive capacity × × E2-11 Motor Rated Output 0.00 to 65.00	er l							
E1-12*2 Mid Output Frequency Voltage 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V S × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V S × E2-01 Motor Rated Current 10 to 200% of dive rated current 10 to 200% of dive rated current S S S × E2-02 Motor No-Load Current 0 to less than E2-01 C × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Iron-Core Saturation Coefficient 1 E2-07 to 0.50 0.50 × × E2-08 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × × × E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 10.0 0.0% × × × E2-10 Motor Iron-Core Saturation Coefficient 3 0.10 to 65.00 dep.on drive capacity × × E2-11 Motor Rated Output 0.00 to 65.00	att							
E1-12*2 Mid Output Frequency Voltage 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V S × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V S × E2-01 Motor Rated Current 10 to 200% of dive rated current 10 to 200% of dive rated current S S S × E2-02 Motor No-Load Current 0 to less than E2-01 C × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Iron-Core Saturation Coefficient 1 E2-07 to 0.50 0.50 × × E2-08 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × × × E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 10.0 0.0% × × × E2-10 Motor Iron-Core Saturation Coefficient 3 0.10 to 65.00 dep.on drive capacity × × E2-11 Motor Rated Output 0.00 to 65.00	L G							
E1-12*2 Mid Output Frequency Voltage 2 0.0 to 255.0 0.0 V × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V S × E1-13*2 Base Voltage 0.0 to 255.0 0.0 V S × E2-01 Motor Rated Current 10 to 200% of dive rated current 10 to 200% of dive rated current S S S × E2-02 Motor No-Load Current 0 to less than E2-01 C × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Iron-Core Saturation Coefficient 1 E2-07 to 0.50 0.50 × × E2-08 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × × × E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 10.0 0.0% × × × E2-10 Motor Iron-Core Saturation Coefficient 3 0.10 to 65.00 dep.on drive capacity × × E2-11 Motor Rated Output 0.00 to 65.00	5						_	
E2-01 Motor Rated Current 10 to 200% of drive rated current S S × E2-02 Motor Rated Slip 0.00 to 20.00 dep. on drive than E2-01 S S × E2-03 Motor No-Load Current 0 to less than E2-01 0 to less dep. on drive than E2-01 S S × E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Line-to-Line Resistance 0.000 to 65.000 dep. on drive × E2-06 Motor Iron-Core Saturation E2-07 to 0.50 0.50 × × E2-07 Motor Iron-Core Saturation E2-07 to 0.75 0.50 × × E2-08 Motor Iron-Core Saturation E2-07 to 0.50 0.75 × × E2-10 Motor Iron-Core Saturation E2-07 to 0.075 0.75 × × E2-10 Motor Iron-Core Saturation Coefficient 1 0.00 to 655.00 dep. on drive capacity × × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 <						-	-	
E2-01 Motor Rated Current drive rated current dep. on drive than E2-02 S S X E2-02 Motor Rated Slip 0.00 to 20.00 dep. on drive than E2-01 0 X E2-03 Motor No-Load Current 0 to less than E2-01 0 X E2-04 Number of Motor Poles 2 to 48 4 poles 0 X E2-05 Motor Line-to-Line Resistance 0.000 to 65.000 dep. on drive 0 X E2-06 Motor Iron-Core Saturation Coefficient 1 0.50 0.50 X X E2-07 Motor Iron-Core Saturation Coefficient 2 0.75 0.75 X X E2-08 Motor Iron-Core Saturation Coefficient 2 0.0 to 10.0 0.0% X X E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 655.05 dep. on dep. on capacity X X E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 X X E3-01 Motor 2 Control Method 0.2 0 X X		E1-13*2	Base Voltage	0.0 to 255.0	0.0 V	0	S	×
E2-01 Motor Rated Current drive rated current dep. on drive than E2-02 S S X E2-02 Motor Rated Slip 0.00 to 20.00 dep. on drive than E2-01 0 X E2-03 Motor No-Load Current 0 to less than E2-01 0 X E2-04 Number of Motor Poles 2 to 48 4 poles 0 X E2-05 Motor Line-to-Line Resistance 0.000 to 65.000 dep. on drive 0 X E2-06 Motor Iron-Core Saturation Coefficient 1 0.50 0.50 X X E2-07 Motor Iron-Core Saturation Coefficient 2 0.75 0.75 X X E2-08 Motor Iron-Core Saturation Coefficient 2 0.0 to 10.0 0.0% X X E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 655.05 dep. on dep. on capacity X X E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 X X E3-01 Motor 2 Control Method 0.2 0 X X		E2-01	Motor Bated Current			c	6	×
E2-02 Motor Rated Slip 0.00 to 20.00 drive than E2-01 O × E2-03 Motor No-Load Current 0 to less than E2-01 - - - × E2-04 Number of Motor Poles 2 to 48 4 poles - - × E2-05 Motor Line-to-Line Resistance 0.000 to 65.000 dep. on drive - - × E2-06 Motor Iron-Core Saturation E2-07 to 0.50 0.50 × - × E2-07 Motor Iron-Core Saturation Coefficient 1 0.50 0.75 × - × E2-08 Motor Iron-Core Saturation Coefficient 2 0.75 0.75 × - × E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 10.0 0.0% × - × E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 655.00 0.40 kW S S × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × - × × E3-0					dep on	3	3	
E2-03 Motor No-Load Current 0 to less than E2-01 capacity (main E2-01) 0 × E2-04 Number of Motor Poles 2 to 48 4 poles 0 × E2-05 Motor Leakage Inductance 0.00 to 40.0 0 × E2-06 Motor Iron-Core Saturation Coefficient 1 E2-07 to 0.50 0.50 × × E2-09 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × × E2-09 Motor Iron-Core Saturation Coefficient 2 0.0 to 10.0 0.0% × × E2-10 Motor Iron-Core Saturation Coefficient 2 0.10 to 10.0 0.0% × × E2-11 Motor Iron-Core Saturation Coefficient 3 0 to 655.05 dep.on drive capacity × × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E3-01 Motor 2 Control Method 0.2 0 × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-05*<		E2-02	Motor Rated Slip	0.00 to 20.00		0	0	×
E2-03 Motor No-Load Current than E2-01 C X E2-04 Number of Motor Poles 2 to 48 4 poles C X E2-05 Motor Line-to-Line Resistance 0.000 to 65.000 dep.on (capacity) C X E2-06 Motor Leakage Inductance 0.00 to 40.0 capacity C X E2-06 Motor Iron-Core Saturation Coefficient 1 E2-07 to 0.75 0.50 X X E2-09 Motor Iron-Core Saturation Coefficient 2 0.0 to 10.0 0.0% X X E2-09 Motor Iron-Core Saturation Coefficient 2 0.75 0.75 X X E2-10 Motor Iron-Core Saturation Coefficient 3 0.0 to 650.00 0.40 kW S S E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 X X E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 X X E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.01 Hz X X E3-04 Motor 2 M						_		
E2-04 Number of Motor Poles 2 to 48 4 poles × E2-05 Motor Line-to-Line Resistance 0.000 to 65.000 dep.on dep.on dep.on dep.on × E2-06 Motor Icon-Core Saturation E2-07 to 0.50 0.50 × × E2-07 Motor Iron-Core Saturation E2-07 to 0.75 0.50 × × × E2-09 Motor Iron-Core Saturation E2-07 to 0.75 0.75 × × × E2-09 Motor Iron-Core Saturation 0 to 65535 dep.on dep.on 0.75 × × × E2-10 Motor Iron-Core Saturation 0.00 to 650.00 0.0% × × × E2-11 Motor Iron-Core Saturation Coefficient 3 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × × E3-01 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × × × <td< td=""><td>I I</td><td>E2-03</td><td>Motor No-Load Current</td><td></td><td></td><td>0</td><td>0</td><td>×</td></td<>	I I	E2-03	Motor No-Load Current			0	0	×
Sector E2-05 Motor Line-to-Line Resistance 0.000 to 65.000 dep. on dive capacity O × E2-06 Motor Leakage Inductance 0.0 to 40.0 capacity O × E2-07 Motor Iron-Core Saturation Coefficient 1 E2-07 to 0.50 0.50 × O × E2-08 Motor Iron-Core Saturation Coefficient 2 E2-07 to 0.75 0.75 × > × E2-09 Motor Iron-Core Saturation Coefficient 2 0.0 to 10.0 0.0% × × × E2-10 Motor Iron-Loss for Torque Compensation 0 to 65535 dep. on dep. on dep. on capacity × × E2-11 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E3-01 Motor 2 Control Method 0.2 0 × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-05 ⁴⁴ Motor 2 Max Output Frequency 0.	1						-	×
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep.on capacity × × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × × E3-01 Motor 2 Control Method 0,2 0 × × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-06 Motor 2 Max Output Frequency 0.0 to E3-04 60.0 Hz × × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz × × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × × E3-08*2 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × ×			Number of Motor Polos		1 polac	\cap	\cap	
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep.on capacity × × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × × E3-01 Motor 2 Control Method 0,2 0 × × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-06 Motor 2 Max Output Frequency 0.0 to E3-04 60.0 Hz × × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz × × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × × E3-08*2 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × ×	s	E2-04		2 to 48		-	-	
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep.on capacity × × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × × E3-01 Motor 2 Control Method 0,2 0 × × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-06 Motor 2 Max Output Frequency 0.0 to E3-04 60.0 Hz × × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz × × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × × E3-08*2 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × ×	sters	E2-04 E2-05	Motor Line-to-Line Resistance	2 to 48 0.000 to 65.000	dep. on drive	0	0	×
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep.on capacity × × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × × E3-01 Motor 2 Control Method 0,2 0 × × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-06 Motor 2 Max Output Frequency 0.0 to E3-04 60.0 Hz × × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz × × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × × E3-08*2 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × ×	meters	E2-04 E2-05	Motor Line-to-Line Resistance Motor Leakage Inductance	2 to 48 0.000 to 65.000 0.0 to 40.0	dep. on drive	0	0	×
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep.on capacity × × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × × E3-01 Motor 2 Control Method 0,2 0 × × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-06 Motor 2 Max Output Frequency 0.0 to E3-04 60.0 Hz × × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz × × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × × E3-08*2 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × ×	arameters	E2-04 E2-05 E2-06	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to	dep. on drive capacity	0	0	× ×
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep.on capacity × × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × × E3-01 Motor 2 Control Method 0,2 0 × × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-06 Motor 2 Max Output Frequency 0.0 to E3-04 60.0 Hz × × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz × × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × × E3-08*2 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × ×	Parameters	E2-04 E2-05 E2-06	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50	dep. on drive capacity	0	0	× ×
E2-09 Motor Mechanical Loss 0.0 to 10.0 0.0% × × E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep.on capacity × × × E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × × E3-01 Motor 2 Control Method 0,2 0 × × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-06 Motor 2 Max Output Frequency 0.0 to E3-04 60.0 Hz × × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz × × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × × E3-08*2 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × ×	or Parameters	E2-04 E2-05 E2-06 E2-07	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50	dep. on drive capacity 0.50	0 0 ×	0	× × ×
E2-10 Motor Iron Loss for Torque Compensation 0 to 65535 dep. on drive capacity ···· × × E2-11 Motor Rated Output 0.00 to 655.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × ··· × E3-01 Motor 2 Control Method 0.2 0 ··· × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ··· × E3-05*2 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ··· × E3-06 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz ··· × E3-07 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ··· ×	10tor Parameters	E2-04 E2-05 E2-06 E2-07	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to	dep. on drive capacity 0.50	0 0 ×	0	× × ×
E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × × E3-01 Motor 2 Control Method 0.2 0 × × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × × E3-05*2 Motor 2 Max Output Frequency 0.0 to 255.0 200.0 V × × E3-06 Motor 2 Max Voltage 0.0 to 255.0 200.0 V × × E3-06 Motor 2 Max Voltage 0.0 to E3-04 60.0 Hz × × E3-06 Motor 2 Mid Output Frequency 0.0 to E3-04 40.0 Hz × × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × × E3-08*2 Motor 2 Mid Output Freq. 0.0 to 255.0 16.0 V × ×	Motor Parameters	E2-04 E2-05 E2-06 E2-07 E2-08	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to 0.75	dep. on drive capacity 0.50 0.75	0 0 × ×	000000000000000000000000000000000000000	× × × ×
E2-11 Motor Rated Output 0.00 to 650.00 0.40 kW S S × E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × ×	Motor Parameters	E2-04 E2-05 E2-06 E2-07 E2-08 E2-09	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to 0.75 0.0 to 10.0	dep. on drive capacity 0.50 0.75 0.0%	0 0 × × ×	00000	× × × × ×
E2-12 Motor Iron-Core Saturation Coefficient 3 1.30 to 5.00 1.30 × × E3-01 Motor 2 Control Method 0,2 0 × × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × × E3-05 ⁴⁰ Motor 2 Max Output Frequency 0.0 to 255.0 200.0 V × × E3-06 Motor 2 Max Voltage 0.0 to E3-04 60.0 Hz × × E3-06 Motor 2 Max Voltage 0.0 to E3-04 60.0 Hz × × E3-07 Motor 2 Mid Output Frequency 0.0 to E3-04 3.0 Hz × × E3-08 ⁴² Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ×	Motor Parameters	E2-04 E2-05 E2-06 E2-07 E2-08 E2-09	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to 0.75 0.0 to 10.0	dep. on drive capacity 0.50 0.75 0.0% dep. on drive	0 0 × × ×	00000	× × × × ×
E2-12 Coefficient 3 1.30 to 5.00 1.30 X V X E3-01 Motor 2 Control Method 0,2 0 0 × E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz 0 × E3-05*2 Motor 2 Max Output Frequency 0.0 to 255.0 200.0 V × E3-06 Motor 2 Max Voltage 0.0 to 255.0 200.0 V × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × E3-08*2 Motor 2 Mid Output Freq. 0.0 to 255.0 16.0 V ×	Motor Parameters	E2-04 E2-05 E2-06 E2-07 E2-08 E2-09 E2-10	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to 0.75 0.0 to 10.0 0 to 65535	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity	0 0 × × ×	0 0 0 0 0 x	× × × × ×
Bit State Bit State Bit State Bit State State <thstate< th=""> State State<!--</td--><td>Motor Parameters</td><td>E2-04 E2-05 E2-06 E2-07 E2-08 E2-09 E2-10</td><td>Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Rated Output</td><td>2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to 0.75 0.0 to 10.0 0 to 65535</td><td>dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity</td><td>0 0 × × ×</td><td>0 0 0 0 0 x</td><td>× × × × ×</td></thstate<>	Motor Parameters	E2-04 E2-05 E2-06 E2-07 E2-08 E2-09 E2-10	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Rated Output	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to 0.75 0.0 to 10.0 0 to 65535	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity	0 0 × × ×	0 0 0 0 0 x	× × × × ×
Signed E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz × E3-05*2 Motor 2 Max Voltage 0.0 to 255.0 200.0 V × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz × E3-08*2 Motor 2 Mid Output Freq. 0.0 to 255.0 16.0 V ×	Motor Parameters	E2-04 E2-05 E2-06 E2-07 E2-08 E2-09 E2-10 E2-11	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Rated Output Motor Iron-Core Saturation	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.75 0.0 to 10.0 0 to 65535 0.00 to 650.00	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity 0.40 kW	0 0 × × × × S	0 0 0 0 × \$	× × × × × ×
Solution E3-04 Motor 2 Max Output Frequency 40.0 to 400.0 60.0 Hz ··· × E3-05*2 Motor 2 Max Voltage 0.0 to 255.0 200.0 V ··· × E3-05*2 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ··· × E3-06 Motor 2 Base Frequency 0.0 to E3-04 60.0 Hz ··· × E3-07 Motor 2 Mid Output Freq. 0.0 to E3-04 3.0 Hz ··· × E3-08*2 Motor 2 Mid Output Freq. Voltage 0.0 to 255.0 16.0 V ··· ×	Motor Parameters	E2-04 E2-05 E2-06 E2-07 E2-08 E2-09 E2-10 E2-11	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Rated Output Motor Iron-Core Saturation	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.75 0.0 to 10.0 0 to 65535 0.00 to 650.00	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity 0.40 kW	0 0 × × × × S	0 0 0 0 × \$	× × × × × ×
	Motor Parameters	E2-04 E2-05 E2-06 E2-07 E2-08 E2-09 E2-10 E2-11 E2-12	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Rated Output Motor Iron-Core Saturation Coefficient 3	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to 0.75 0.0 to 10.0 0 to 65535 0.00 to 650.00 1.30 to 5.00	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity 0.40 kW 1.30	0 0 × × × × S	0 0 0 0 × \$	× × × × × × ×
		E2-04 E2-05 E2-06 E2-07 E2-08 E2-09 E2-10 E2-11 E2-12 E2-12 E3-01	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Rated Output Motor Iron-Core Saturation Coefficient 3 Motor 2 Control Method	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.75 0.0 to 10.0 0 to 65535 0.00 to 655.00 1.30 to 5.00 0,2	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity 0.40 kW 1.30 0	0 0 x x x 0 s x 0 s x	0 0 0 0 × \$ 0	× × × × × × × × ×
		E2-04 E2-05 E2-06 E2-07 E2-08 E2-09 E2-10 E2-11 E2-11 E2-12 E3-01 E3-04	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Rated Output Motor Iron-Core Saturation Coefficient 3 Motor 2 Control Method Motor 2 Max Output Frequency	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.75 0.0 to 10.0 0 to 65535 0.00 to 65535 1.30 to 5.00 0.2 40.0 to 400.0	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity 0.40 kW 1.30 0 60.0 Hz	00 x x x x 0 s x 00	0 0 0 × 5 0 0	× × × × × × × × × ×
		E2-04 E2-05 E2-06 E2-07 E2-08 E2-09 E2-10 E2-11 E2-11 E2-12 E3-01 E3-04 E3-05* ²	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Rated Output Motor Iron-Core Saturation Coefficient 3 Motor 2 Control Method Motor 2 Max Output Frequency Motor 2 Max Voltage	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to 0.75 0.0 to 10.0 0 to 65535 0.00 to 65535 1.30 to 5.00 0.2 40.0 to 400.0 0.0 to 255.0	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity 0.40 kW 1.30 0 60.0 Hz 200.0 V	0 x x x x 0 s x 0 0 0	0 0 0 0 × 5 0 0 0	× × × × × × × × × × × × ×
		E2-04 E2-05 E2-06 E2-07 E2-09 E2-10 E2-11 E2-12 E3-01 E3-04 E3-05*2 E3-06	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Rated Output Motor Iron-Core Saturation Coefficient 3 Motor 2 Control Method Motor 2 Max Output Frequency Motor 2 Max Voltage Motor 2 Base Frequency	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to 0.75 0.0 to 10.0 0 to 65535 0.00 to 65535 1.30 to 5.00 0.2 40.0 to 400.0 0.0 to 255.0 0.0 to E3-04	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity 0.40 kW 1.30 0 60.0 Hz 200.0 V 60.0 Hz	0 x x x 0 s x 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× × × × × × × × × × × × × ×
E3-09 Motor 2 Min. Output Freq. 0.0 to E3-04 1.5 Hz		E2-04 E2-05 E2-06 E2-07 E2-09 E2-09 E2-10 E2-11 E2-12 E3-01 E3-04 E3-05*2 E3-06 E3-07	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Rated Output Motor Iron-Core Saturation Coefficient 3 Motor 2 Control Method Motor 2 Max Output Frequency Motor 2 Base Frequency Motor 2 Base Frequency	2 to 48 0.000 to 65.000 0.0 to 40.0 E2-07 to 0.50 E2-07 to 0.75 0.0 to 10.0 0 to 65535 0.00 to 65500 1.30 to 5.00 0.2 40.0 to 400.0 0.0 to 255.0 0.0 to E3-04 0.0 to E3-04	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity 0.40 kW 1.30 0 60.0 Hz 200.0 V 60.0 Hz 3.0 Hz	0 0 x x x 0 5 x 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X
		E2-04 E2-05 E2-06 E2-07 E2-09 E2-09 E2-10 E2-11 E2-12 E3-01 E3-05 ^{*2} E3-06 E3-07 E3-08 ^{*2}	Motor Line-to-Line Resistance Motor Leakage Inductance Motor Iron-Core Saturation Coefficient 1 Motor Iron-Core Saturation Coefficient 2 Motor Mechanical Loss Motor Iron Loss for Torque Compensation Motor Iron-Core Saturation Coefficient 3 Motor 2 Control Method Motor 2 Max Output Frequency Motor 2 Max Voltage Motor 2 Mas Output Freq. Motor 2 Mid Output Freq.	$\begin{array}{c} 2 \text{ to } 48 \\ 0.000 \text{ to } 65.000 \\ 0.0 \text{ to } 40.0 \\ \text{E2-07 to } \\ 0.50 \\ \text{E2-07 to } \\ 0.75 \\ 0.0 \text{ to } 10.0 \\ 0 \text{ to } 65535 \\ 0.00 \text{ to } 65535 \\ 0.00 \text{ to } 655.00 \\ 1.30 \text{ to } 5.00 \\ 0.2 \\ 40.0 \text{ to } 400.0 \\ 0.0 \text{ to } 255.0 \\ 0.0 \text{ to } 255.0 \\ 0.0 \text{ to } 255.0 \\ \end{array}$	dep. on drive capacity 0.50 0.75 0.0% dep. on drive capacity 0.40 kW 1.30 0 60.0 Hz 200.0 V 200.0 V 200.0 V 200.0 V	0 0 x x x 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X

Image: base of the second se	on					Con	trol N	ode
Note 2 Bit 10 Motor 2	Functi	No.	Name	Range	Def*1	V/f	OLV	РМ
E5-13** Motor 2 Base Voltage 0.0 to 25.0 0.0 Vac S X E4-01 Motor 2 Rated Current ¹⁰ boding dime 0 0 X E4-01 Motor 2 Rated No-Load 0 to 120.00 0 X Apples 0 X E4-02 Motor 2 Rated No-Load 0 to 120.00 General 0 X E4-04 Motor 2 Mator Poles 2 to 48 4 poles 0 X E4-05 Motor 2 Motor Coefficient 1 0.00 to 5.00 0.50 X X E4-06 Motor 2 Motor Ion-Core Saturation Coefficient 1 0.00 to 5.00 0.00 X X E4-10 Motor 2 Ion-Loss 0.10 to 10.00 0 X X X E4-14 Motor 2 Silo Compensation Gain 0.01 to 2.50 0.00 X X X S E5-01 Motor Relad Current 10 to 2.50 1.00 X X S E5-03 Motor Poles 2 to 48 dep of X S X								
Est-13** Motor 2 Base Voltage 0.0 to 25.0 0.0 vac S × E4-01 Motor 2 Rated Current The 20% of dwine 0 × <td>2 V/f eristic</td> <td>E3-11</td> <td></td> <td></td> <td>0.0 Hz</td> <td>0</td> <td>0</td> <td>×</td>	2 V/f eristic	E3-11			0.0 Hz	0	0	×
Est-13** Motor 2 Base Voltage 0.0 to 25.0 0.0 vac S × E4-01 Motor 2 Rated Current The 20% of dwine 0 × <td>lotor aracte</td> <td>E3-12*2</td> <td></td> <td></td> <td>0.0 Vac</td> <td>0</td> <td>0</td> <td>×</td>	lotor aracte	E3-12*2			0.0 Vac	0	0	×
E4-01 Motor 2 Rated Current Wb 20% of we advanted and aurent O X E4-02 Motor 2 Rated No-Load 0 to less (oppob) 0 X E4-03 Motor 2 Rated No-Load 0 to less (oppob) 0 X E4-05 Motor 2 Lanet O-Line Resistance 0.000 to 6500 0 X E4-05 Motor 2 Lanet O-Line Resistance 0.000 to 0.50 0.50 X X E4-06 Motor 2 Motor Ion-Core Setting for Sutariation Coefficient 1 0.00 to 0.50 0.50 X X E4-08 Motor 2 Inon-Core Saturation Coefficient 3 0.00 to 6500 0.00 X X E4-11 Motor 2 Inon-Core Saturation Coefficient 3 1.30 X X X E4-12 Motor 2 Ion-Core Saturation Coefficient 3 1.30 1.30 X X S E5-03 Motor Resistance 0.000 to 65000 Coepacity X S E5-04 Motor Resistance 0.000 to 65000 Coepacity X S E5-05 Motor Resistance 0.000 to 60000 X	Cha	F3-13*2			0 0 Vac	0	S	×
E4-01 Motor 2 Pattel B Quirrelin rate			Č. Č.		0.0 140			
E4-02 Motor 2 Rated Slip 0.00 to 20.00 own O × E4-03 Motor 2 Rated No-Load than E4-01 O > × E4-04 Motor 2 Line-to-Line Resistance (0.00 to 65.00.00 deg.on O × E4-05 Motor 2 Line-to-Line Resistance (0.00 to 65.00.00 deg.on O × E4-07 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.01 to 0.50 0.50 × E4-08 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.01 to 0.50 0.50 × × E4-09 Motor 2 Motor Iron-Core Saturation Coefficient 3 0.01 to 0.50 × × E4-11 Motor 2 Rated Capacity 0.00 to 650.00 0.00 × × E4-12 Motor 2 Rated Capacity (for PM motor) 0.00 to 50.00 0.00 ×		E4-01	Motor 2 Rated Current		den on	0		×
E4-03 Workup Paralect Not-Dada O thess C o × E4-05 Motor 2 Motor Poles 2 to 48 4 poles O × E4-06 Motor 2 Leakage Inductance 0.00 to 0.50 0.50 × × E4-06 Motor 2 Motor Iron-Core Saturation Coefficient 1 0.00 to 0.50 × × E4-06 Motor 2 Motor Iron-Core Saturation Coefficient 2 E4/07 to 0.75 × × × E4-08 Motor 2 Notor Iron-Core Saturation Coefficient 3 0.00 to 65:00 × × × E4-11 Motor 2 Notor Care Saturation 0.00 to 65:00 caeady × × E4-12 Motor 2 Iron-Core Saturation 0.00 to 2.5 0.0 × × × S E5-01 Motor Rated Capacity for PM motol 0.10 to 15.5 0.0 × × S E5-03 Motor Rated Capacity for PM motol 0.10 to 3 1 × × S E5-04 Motor Axis Inductance 0.001 to 300.00 0.001 to 500.00		E4-02	Motor 2 Rated Slip	0.00 to 20.00	drive	0	0	×
Euront than E4-01 C C E4-06 Motor 2 Lueto-Line Resistance 0.00 to 05.00 dep.on O × E4-06 Motor 2 Luetakage Inductance 0.00 to 0.50 S.0 × × E4-06 Motor 2 Luetor Ion-Core Saturation Coefficient 1 0.00 to 0.50 0.75 × × E4-08 Saturation Coefficient 2 E4-07 to 0.75 × × × E4-08 Motor 2 Motor Ion-Core Saturation Coefficient 3 0.00 to 0.50 0.75 × × E4-10 Motor 2 Rated Capacity 0.00 to 6500 capacity O × × E4-11 Motor 2 Rated Capacity 0.00 to 6500 capacity ×		F4-03			capacity	0	0	×
E4-05 Motor 2 Line-to-Line Resistance 0.00 to 65.00 dep.on O × E4-07 Motor 2 Motor Ion-Core Saturation Coefficient 1 0.00 to 0.50 0.50 × E4-07 Saturation Coefficient 1 Saturation Coefficient 2 E4407 to 0.75 × × E4-08 Motor 2 Motor Ion-Core Saturation Coefficient 2 E4407 to 0.75 × × E4-10 Motor 2 Motor Ion-Core Saturation Coefficient 2 Saturation Coefficient 3 0.01 to 0.50 0.02 × E4-11 Motor 2 Rated Capacity 0.00 to 0.50 0.00 × × E4-14 Motor 2 Ion-Core Saturation 1.30 to 1.30 × × × × S E5-01 Motor Rated Current 100 to 2.50 0.00 × × × × S E5-03 Motor Rated Current 100 to 2000 to 65.00 v=× × × × S E5-04 Motor Axis Inductance 0.001 to 30.00 v=× S E5-05 Mot					4	_	_	
E4-10 Motor 2 Iron Loss 0 to 65535 deg. or capado × × E4-12 Motor 2 Iron-Core Saturation Coefficient 3 1.30 1.30 × × E4-12 Motor 2 Silp Compensation Gain 0.0 to 2.50 0.0 × E4-14 Motor 2 Silp Compensation Gain Noto 2.50 1.00 × × E4-15 Torque Compensation Gain Noto 2.50 1.00 × × × S E5-01 Motor Rated Current Tib 0.00% of drive interd current Tib 0.00% of drive reparation × × S E5-04 Motor Rated Constant 1 0.01 to 60000 × × S E5-05 Motor Akis Inductance 0.00 to 60000 × × S E5-04 Motor Induction Votage Constant 1 0.01 to 60000 × × S E5-05 Motor Rated Current Time 1.00 × × S E5-06 Motor Notage Constant 2 0.01 to 60000 V × S E5-07	S					-	-	
E4-10 Motor 2 Iron Loss 0 to 65535 deg. on capacity × × E4-11 Motor 2 Iron-Core Saturation Coefficient 3 1.30 × × E4-12 Motor 2 Sip Compensation Gain 0.0 to 2.5 0.0 × E4-14 Motor 2 Sip Compensation Gain Noto 2.5 0.0 × × E4-15 Torque Compensation Gain Noto 2.5 1.00 × × × × S E5-02 Motor Rated Capacity (for PM motol 0.00 to 650.00 × × × S E5-03 Motor Rated Current 10 to 200.01 × × S E5-04 Motor Paties Inductance 0.00 to 600.00 × × S E5-05 Motor Akis Inductance 0.00 to 100.00 V × S E5-04 Motor Induction Votage Constant 1 0.0 to 200.00 × × S E5-05 Motor Akis Inductance 0.001 to 0.00 0.x × S E5-05 Motor Induction Votage Constant 2	etei				drive		-	
E4-10 Motor 2 Iron Loss 0 to 65535 deg. on capacity × × E4-11 Motor 2 Iron-Core Saturation Coefficient 3 1.30 × × E4-12 Motor 2 Sip Compensation Gain 0.0 to 2.5 0.0 × E4-14 Motor 2 Sip Compensation Gain Noto 2.5 0.0 × × E4-15 Torque Compensation Gain Noto 2.5 1.00 × × × × S E5-02 Motor Rated Capacity (for PM motol 0.00 to 650.00 × × × S E5-03 Motor Rated Current 10 to 200.01 × × S E5-04 Motor Paties Inductance 0.00 to 600.00 × × S E5-05 Motor Akis Inductance 0.00 to 100.00 V × S E5-04 Motor Induction Votage Constant 1 0.0 to 200.00 × × S E5-05 Motor Akis Inductance 0.001 to 0.00 0.x × S E5-05 Motor Induction Votage Constant 2	am		*					
E4-10 Motor 2 Iron Loss 0 to 65535 deg. or capado × × E4-12 Motor 2 Iron-Core Saturation Coefficient 3 1.30 1.30 × × E4-12 Motor 2 Silp Compensation Gain 0.0 to 2.50 0.0 × E4-14 Motor 2 Silp Compensation Gain Noto 2.50 1.00 × × E4-15 Torque Compensation Gain Noto 2.50 1.00 × × × S E5-01 Motor Rated Current Tib 0.00% of drive interd current Tib 0.00% of drive reparation × × S E5-04 Motor Rated Constant 1 0.01 to 60000 × × S E5-05 Motor Akis Inductance 0.00 to 60000 × × S E5-04 Motor Induction Votage Constant 1 0.01 to 60000 × × S E5-05 Motor Rated Current Time 1.00 × × S E5-06 Motor Notage Constant 2 0.01 to 60000 V × S E5-07	Par	E4-07	Saturation Coefficient 1	0.00 to 0.50	0.50	×		×
E4-10 Motor 2 Iron Loss 0 to 65535 deg. on capacity × × E4-11 Motor 2 Iron-Core Saturation Coefficient 3 1.30 × × E4-12 Motor 2 Sip Compensation Gain 0.0 to 2.5 0.0 × E4-14 Motor 2 Sip Compensation Gain Noto 2.5 0.0 × × E4-15 Torque Compensation Gain Noto 2.5 1.00 × × × × S E5-02 Motor Rated Capacity (for PM motol 0.00 to 650.00 × × × S E5-03 Motor Rated Current 10 to 200.01 × × S E5-04 Motor Paties Inductance 0.00 to 600.00 × × S E5-05 Motor Akis Inductance 0.00 to 100.00 V × S E5-04 Motor Induction Votage Constant 1 0.0 to 200.00 × × S E5-05 Motor Akis Inductance 0.001 to 0.00 0.x × S E5-05 Motor Induction Votage Constant 2	r 2 I	E4-08	Motor 2 Motor Iron-Core	Setting for	0.75	×	0	×
E4-10 Motor 2 Iron Loss 0 to 65535 deg. or capado × × E4-12 Motor 2 Iron-Core Saturation Coefficient 3 1.30 1.30 × × E4-12 Motor 2 Silp Compensation Gain 0.0 to 2.50 0.0 × E4-14 Motor 2 Silp Compensation Gain Noto 2.50 1.00 × × E4-15 Torque Compensation Gain Noto 2.50 1.00 × × × S E5-01 Motor Rated Current Tib 0.00% of drive interd current Tib 0.00% of drive reparation × × S E5-04 Motor Rated Constant 1 0.01 to 60000 × × S E5-05 Motor Akis Inductance 0.00 to 60000 × × S E5-04 Motor Induction Votage Constant 1 0.01 to 60000 × × S E5-05 Motor Rated Current Time 1.00 × × S E5-06 Motor Notage Constant 2 0.01 to 60000 V × S E5-07	otoi							
E4-11 Motor 2 Rated Capacity 0.00 to 650.00 capacity C × E4-12 Motor 2 Iron-Core Saturation 1.30 to 5.00 1.30 × × E4-14 Motor 2 Sip Compensation Gain - Motor 2 1.00 to 2.50 0.00 ×	M						<u> </u>	
E4-12 Motor 2 Iron-Core Saturation Coefficient 3 1.30 to 1.30 x x E4-14 Motor 2 Iron-Core Saturation Coefficient 3 0.0 to 2.5 0.0 x x E4-15 Torque Compensation Gain - Motor 21.00 to 2.50 1.00 x		-			drive	_		
E4-12 Coefficient 3 0 1.30 X 0 X E4-15 Motor 2 lip Compensation Gain 0.0 to 2.5 0.0 0 X E4-15 Torgue Compensation Gain 0.0 to 2.5 0.0 0 X E4-15 Torgue Compensation Gain 0.0 to 2.0 to 1.00 0 X X S E5-01 Motor Rated Capachy (for PM motor) 0.00 to 150.00 X X S E5-05 Motor Rated Current 10 to 2005.00 X X S E5-06 Motor Atxis Inductance 0.00 to 6000.00 X X S E5-07 Motor Induction Voltage Constant 1 0.0 to 2000.0 X X S E5-08 Motor Induction Voltage Constant 1 0.0 to 2000.0 X X S E5-09 Motor Induction Voltage Constant 1 0.0 to 2000.0 X X S E5-09 Motor Induction Voltage Constant 1 0.0 to 3 1 X X Communication Belection at Ovitatin 0 0 to 3 <td></td> <td>E4-11</td> <td></td> <td></td> <td>capacity</td> <td>0</td> <td>0</td> <td>×</td>		E4-11			capacity	0	0	×
E4-14 Motor 2 Slip Compensation Gain 0.0 to 2.5 0.0 × E5-01 Motor Cds Selection for PM motol 0.000 to FFFF ×		E4-12			1.30	×	0	×
E4-15 Torque Compensation Gain - Motor 2 1.00 to 2.50 1.00 × ×		E4-14			0.0	0	0	×
E5-01 Motor Code Selection (for PM motor) 0000 to FFFF X X S E5-02 Motor Rated Capacity (for PM motor) 0.10 to 18.50 X X S E5-03 Motor Poles 2 to 48 dep. on X X S E5-06 Motor Q Axis Inductance 0.00 to 500.00 x X S E5-07 Motor Induction Voltage Constant 1 0.00 to 600.00 X X S E5-07 Motor Induction Voltage Constant 2 0.01 to 600.00 X X S E5-29 Motor Induction Voltage Constant 2 0.01 to 600.00 X X S E5-29 Motor Induction Voltage Constant 2 0.01 to 600.00 X X S F1-02 Operation Selection at PG 0 to 3 1 X X F1-03 Overspeed Detection Level 0 to 3 1 X X F1-10 Detection Delay Time 0.0 to 10.0 0.5 s X X F1-11 Excessive Speed Deviation 0.1 d <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td>						-	-	
E5-03 Motor Rated Current 10 to 200% of drive inted current ×						×	×	S
B E5-09 Motor Induction Voltage Constant 1 0.0 ×	s	E5-02	Motor Rated Capacity (for PM motor)	0.10 to 18.50		×	×	S
B E5-09 Motor Induction Voltage Constant 1 0.0 ×	eter	E5-03	Motor Rated Current			×	×	s
B E5-09 Motor Induction Voltage Constant 1 0.0 ×	ame				den on			
B E5-09 Motor Induction Voltage Constant 1 0.0 ×	ara				drive			
B E5-09 Motor Induction Voltage Constant 1 0.0 ×	or F				capacity			
B E5-09 Motor Induction Voltage Constant 1 0.0 ×	1ot							-
Eb-24 Motor Induction Voltage Constant 2 0.0 to 0000.0 X <thx< th=""> X <thx< th=""> <t< td=""><td>۸N</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></thx<></thx<>	۸N							
Bit - 02 Operation Selection at PG Open Circuit (PGo) 0 to 3 1 × × F1-02 Operation Selection at Overspeed (oS) 0 to 3 1 × × × F1-04 Operation Selection at Overspeed Detection Level 0 to 3 1 × × × F1-04 Operation Selection Level 0 to 20 1.0 × × F1-05 Overspeed Detection Level 0 to 50 10% × × F1-05 Detection Level 0 to 50 10% × × F1-11 Excessive Speed Deviation Detection Delay Time 0.0 to 10.0 0.5 s × × F1-11 Excessive Speed Deviation Detection Communications Error Operation Selection 0.0 to 10.0 2.0 s × × F6-01 Communications Error Option Selection 0 to 3 1 ○ ○ F6-03 External Fault from Comm. Option Selection 0 to 5.0 2.0 s ○ ○ F6-07 Multi-Step Speed during NefRef/ComRef 0.1 ○ ○ ○	٦	E5-24				×	×	
B1-02 Open Circuit (PGo) 0 to 3 1 0 X X F1-03 Operation Selection at Overspeed (oS) 0 to 3 1 0 X X F1-04 Operation Selection at Deviation 0 to 3 1 0 X X F1-04 Overspeed Detection Level 0 to 120 115% X X F1-09 Overspeed Detection Level 0 to 50 10% X X F1-10 Excessive Speed Deviation Detection Level 0 to 50 10% X X F1-14 PG Open-Circuit Detection Detection Delay Time 0.0 to 10.0 2.0 s X X F6-01 Communications Error Operation Selection 0 to 5 1 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 F6-04 Bus Error Detection Time 0.0 to 5.0 2.0 s 0 0 F6-10 CC-Link Node Address 0 to 63 0 0 0 0 F6-12 </td <td></td> <td>E5-39</td> <td>Current Detection Delay Time</td> <td>- 1000 to +1000</td> <td>0µs</td> <td>0</td> <td>0</td> <td>0</td>		E5-39	Current Detection Delay Time	- 1000 to +1000	0µs	0	0	0
F6-01 Communications Error Operation Selection 0 to 5 1 0 0 F6-02 External Fault from Comm. Option Selection 0,1 0	PG	F1-02		0 to 3	1	0	×	×
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- ×	1102		0.00			~	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	dbac	F1-03		0 to 3	1	0	×	×
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Feed ars	E1_04		0 to 3	2	0	×	×
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PG F	-			-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ole l arar					-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	p P	F1 10			100/		~	~~~
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	vith (Setu	F1-10	Detection Level	0.050	10%	0	^	^
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N N	F1-11		0.0 to 10.0	050	0	×	×
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ontre			0.0 10 10.0	0.0 3			^
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	/f C	F1-14		0.0 to 10.0	2.0 s	0	×	×
Image: Product of the state of the	>							
F6-02 External Fault from Comm. Option Selection 0,1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 External Fault from Comm. Option Operation Selection 0 to 3 1 0 0 0 F6-03 Multi-Step Speed during NefRef/ComRef 0,1 0 0 0 0 F6-07 Multi-Step Speed during NefRef/ComRef 0,1 0 0 0 0 0 F6-10 CC-Link Node Address 0 to 63 0		F6-01		0 to 5	1	0	0	0
F6-02 Option Selection 0,1 0								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		F6-02		0,1	0	0	0	0
Option Operation Selection Image: Constraint of the selection of the		F0.00		0.4-0	4			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		F0-03	Option Operation Selection	0103	I			
Bit F6-07 NefRef/ComRef 0,1 0 0 0 F6-08 Reset Communication Parameters 0,1 0 0 0 0 F6-10 CC-Link Node Address 0 to 63 0 0 0 0 F6-11 CC-Link Communications Speed 0 to 4 0 0 0 0 F6-11 CC-Link Communications Speed 0 to 4 0 <td></td> <td>F6-04</td> <td></td> <td>0.0 to 5.0</td> <td>2.0 s</td> <td>0</td> <td>0</td> <td>0</td>		F6-04		0.0 to 5.0	2.0 s	0	0	0
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0	gs	F6-07		0,1	0	0	0	0
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0	ttin							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0	Se							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0	ard							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0	Ő							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0 0 F6-40 CompoNet Node ID 0 to 63 0 0 0 F6-41 CompoNet Speed 0 to 255 0 0 0 F6-50 DeviceNet MAC Address 0 to 63 *1 0 0 F6-51 Device Net Communications Speed 0 to 4 *1 0 0 F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 0 0	tior							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0 0 F6-40 CompoNet Node ID 0 to 63 0 0 0 F6-41 CompoNet Speed 0 to 255 0 0 0 F6-50 DeviceNet MAC Address 0 to 63 *1 0 0 F6-51 Device Net Communications Speed 0 to 4 *1 0 0 F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 0 0	do							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0 0 F6-40 CompoNet Node ID 0 to 63 0 0 0 F6-41 CompoNet Speed 0 to 255 0 0 0 F6-50 DeviceNet MAC Address 0 to 63 *1 0 0 F6-51 Device Net Communications Speed 0 to 4 *1 0 0 F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 0 0	suc							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0 0 F6-40 CompoNet Node ID 0 to 63 0 0 0 F6-41 CompoNet Speed 0 to 255 0 0 0 F6-50 DeviceNet MAC Address 0 to 63 *1 0 0 F6-51 Device Net Communications Speed 0 to 4 *1 0 0 F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 0 0	atic							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0 0 F6-40 CompoNet Node ID 0 to 63 0 0 0 F6-41 CompoNet Speed 0 to 255 0 0 0 F6-50 DeviceNet MAC Address 0 to 63 *1 0 0 F6-51 Device Net Communications Speed 0 to 4 *1 0 0 F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 0 0	nic							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0 0 F6-40 CompoNet Node ID 0 to 63 0 0 0 F6-41 CompoNet Speed 0 to 255 0 0 0 F6-50 DeviceNet MAC Address 0 to 63 *1 0 0 F6-51 Device Net Communications Speed 0 to 4 *1 0 0 F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 0 0	nu							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0 0 F6-40 CompoNet Node ID 0 to 63 0 0 0 F6-41 CompoNet Speed 0 to 255 0 0 0 F6-50 DeviceNet MAC Address 0 to 63 *1 0 0 F6-51 Device Net Communications Speed 0 to 4 *1 0 0 F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 0 0	mo							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0 0 F6-40 CompoNet Node ID 0 to 63 0 0 0 F6-41 CompoNet Speed 0 to 255 0 0 0 F6-50 DeviceNet MAC Address 0 to 63 *1 0 0 F6-51 Device Net Communications Speed 0 to 4 *1 0 0 F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 0 0	J C							
F6-33 CANopen Node ID Selection 0 to 1226 99 0 0 F6-36 CANopen Communications Speed 0 to 8 6 0 0 F6-40 CompoNet Node ID 0 to 63 0 0 0 F6-41 CompoNet Speed 0 to 255 0 0 0 F6-50 DeviceNet MAC Address 0 to 63 *1 0 0 F6-51 Device Net Communications Speed 0 to 4 *1 0 0 F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 0 0	eria							
F6-40 CompoNet Node ID 0 to 63 0 ○ ○ F6-41 CompoNet Speed 0 to 255 0 ○ ○ F6-50 DeviceNet MAC Address 0 to 63 *1 ○ ○ F6-51 Device Net Communications Speed 0 to 4 *1 ○ ○ F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 ○ ○	Ō	F6-35		,		0	0	0
F6-41 CompoNet Speed 0 to 255 0 ○ ○ F6-50 DeviceNet MAC Address 0 to 63 *1 ○ ○ F6-51 Device Net Communications Speed 0 to 4 *1 ○ ○ F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 ○ ○								
F6-50 DeviceNet MAC Address 0 to 63 *1 ○ ○ F6-51 Device Net Communications Speed 0 to 4 *1 ○ ○ F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 ○ ○								
F6-51 Device Net Communications Speed 0 to 4 *1 ○ ○ F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 ○ ○								
F6-52 DeviceNet / CompoNet PCA Setting 0 to 255 21 O O								
F6-53 DeviceNet / CompoNet PPA Setting 0 to 255 71 0		F6-52	DeviceNet / CompoNet PCA Setting	0 to 255	71	0		0

*1: Default setting depends on the control mode.
 *2: Values shown here are for 200 V class drives. Double the value when using a 400 V class drive.

Box Name Barge Deff Control of the second se	ion					Con	trol M	lode
Bit Bit <th>Functi</th> <th>No.</th> <th>Name</th> <th>Range</th> <th>Def*1</th> <th>V/f</th> <th>OLV</th> <th>PM</th>	Functi	No.	Name	Range	Def*1	V/f	OLV	PM
F6-60 DeviceNet / CompoNet Speed Scaling Factor -15 to 15 0 0 0 0 F6-67 DeviceNet / CompoNet Current Scaling Factor -15 to 15 0 <t< td=""><td></td><td></td><td></td><td></td><td>0</td><td>-</td><td>-</td><td>-</td></t<>					0	-	-	-
F6-63 DeviceNet MAC ID from Network 0 O H1-01 Multi-Function Digital Input Terminal S2 Function Selection H1-03 Multi-Function Digital Input Terminal S3 Function Selection 1 0 24 0 0 H1-04 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 14 0 0 0 H1-05 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 4(3) 0 0 0 H1-06 Multi-Function Digital Input Terminal S7 Function Selection 0 0 192 0 <t< td=""><td>ings</td><td>F6-55</td><td></td><td>0 to 2 (read only)</td><td>_</td><td>0</td><td>0</td><td>0</td></t<>	ings	F6-55		0 to 2 (read only)	_	0	0	0
F6-63 DeviceNet MAC ID from Network 0 O H1-01 Multi-Function Digital Input Terminal S2 Function Selection H1-03 Multi-Function Digital Input Terminal S3 Function Selection 1 0 24 0 0 H1-04 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 14 0 0 0 H1-05 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 4(3) 0 0 0 H1-06 Multi-Function Digital Input Terminal S7 Function Selection 0 0 192 0 <t< td=""><td>Sett</td><td>F6-56</td><td></td><td>– 15 to 15</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Sett	F6-56		– 15 to 15	0	0	0	0
F6-63 DeviceNet MAC ID from Network 0 O H1-01 Multi-Function Digital Input Terminal S2 Function Selection H1-03 Multi-Function Digital Input Terminal S3 Function Selection 1 0 24 0 0 H1-04 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 14 0 0 0 H1-05 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 4(3) 0 0 0 H1-06 Multi-Function Digital Input Terminal S7 Function Selection 0 0 192 0 <t< td=""><td>Card</td><td>F6-57</td><td>DeviceNet / CompoNet Current</td><td>– 15 to 15</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Card	F6-57	DeviceNet / CompoNet Current	– 15 to 15	0	0	0	0
F6-63 DeviceNet MAC ID from Network 0 O H1-01 Multi-Function Digital Input Terminal S2 Function Selection H1-03 Multi-Function Digital Input Terminal S3 Function Selection 1 0 24 0 0 H1-04 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 14 0 0 0 H1-05 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 4(3) 0 0 0 H1-06 Multi-Function Digital Input Terminal S7 Function Selection 0 0 192 0 <t< td=""><td>Optior</td><td>F6-58</td><td>DeviceNet / CompoNet Torque</td><td>– 15 to 15</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Optior	F6-58	DeviceNet / CompoNet Torque	– 15 to 15	0	0	0	0
F6-63 DeviceNet MAC ID from Network 0 O H1-01 Multi-Function Digital Input Terminal S2 Function Selection H1-03 Multi-Function Digital Input Terminal S3 Function Selection 1 0 24 0 0 H1-04 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 14 0 0 0 H1-05 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 4(3) 0 0 0 H1-06 Multi-Function Digital Input Terminal S7 Function Selection 0 0 192 0 <t< td=""><td>tions (</td><td>F6-59</td><td>DeviceNet / CompoNet Power</td><td>– 15 to 15</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	tions (F6-59	DeviceNet / CompoNet Power	– 15 to 15	0	0	0	0
F6-63 DeviceNet MAC ID from Network 0 O H1-01 Multi-Function Digital Input Terminal S2 Function Selection H1-03 Multi-Function Digital Input Terminal S3 Function Selection 1 0 24 0 0 H1-04 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 14 0 0 0 H1-05 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 4(3) 0 0 0 H1-06 Multi-Function Digital Input Terminal S7 Function Selection 0 0 192 0 <t< td=""><td>nnica</td><td></td><td>Scaling Factor DeviceNet / CompoNet Voltage</td><td></td><td></td><td></td><td></td><td></td></t<>	nnica		Scaling Factor DeviceNet / CompoNet Voltage					
F6-63 DeviceNet MAC ID from Network 0 O H1-01 Multi-Function Digital Input Terminal S2 Function Selection H1-03 Multi-Function Digital Input Terminal S3 Function Selection 1 0 24 0 0 H1-04 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 14 0 0 0 H1-05 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 4(3) 0 0 0 H1-06 Multi-Function Digital Input Terminal S7 Function Selection 0 0 192 0 <t< td=""><td>Comm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Comm							
F6-63 DeviceNet MAC ID from Network 0 O H1-01 Multi-Function Digital Input Terminal S2 Function Selection H1-03 Multi-Function Digital Input Terminal S3 Function Selection 1 0 24 0 0 H1-04 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 14 0 0 0 H1-05 Multi-Function Digital Input Terminal S5 Function Selection 1 0 9F 4(3) 0 0 0 H1-06 Multi-Function Digital Input Terminal S7 Function Selection 0 0 192 0 <t< td=""><td>erial</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	erial							
III-01 Terminal S1 Function Selection H1-02 40 0 0 0 III-02 Multi-Function Digital Input Terminal S2 Function Selection H1-03 1 0 0 0 III-04 Multi-Function Digital Input Terminal S3 Function Selection H1-06 1 1 0 0 0 III-05 Multi-Function Digital Input Terminal S5 Function Selection H1-06 1 0 0 0 III-06 Multi-Function Digital Input Terminal S7 Function Selection (open-collector) 0 <td>0</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	0				-			
9000000000000000000000000000000000000			Multi-Function Digital Input		40	0	0	0
H1-07 Multi-Function Digital Input Terminal X7 Function Selection (open-collector) 6(4) 0 0 H2-01 Terminal MA, MB and MC Function Selection (relay) 0	outs	H1-02	Multi-Function Digital Input		41	0	0	0
H1-07 Multi-Function Digital Input Terminal X7 Function Selection (open-collector) 6(4) 0 0 H2-01 Terminal MA, MB and MC Function Selection (relay) 0	tal Ing	H1-03	Multi-Function Digital Input		24	0	0	0
H1-07 Multi-Function Digital Input Terminal X7 Function Selection (open-collector) 6(4) 0 0 H2-01 Terminal MA, MB and MC Function Selection (relay) 0	Digi		Multi-Function Digital Input	1 to 9E				
H1-07 Multi-Function Digital Input Terminal X7 Function Selection (open-collector) 6(4) 0 0 H2-01 Terminal MA, MB and MC Function Selection (relay) 0	nctior			1 10 51				
H1-07 Multi-Function Digital Input Terminal X7 Function Selection (open-collector) 6(4) 0 0 H2-01 Terminal MA, MB and MC Function Selection (relay) 0	ti-Fu				- (-7			
H1-0/ Terminal X3 Function Selection (open-collector) 6(4) C C C H2-01 Terminal MA, MB and MC (open-collector) 0	Mu		Terminal S6 Function Selection					
Instruction Function Selection (relay) (open-collector) Image: Collector (open-collector) Image: Collector) <thimage: collector)<="" th=""> <thimage: collector)<="" th=""></thimage:></thimage:>		H1-07	Terminal S7 Function Selection		6(4)	0	0	0
Bit Sol Terminal A1 Signal Level Selection 0 to 31 0 0 0 H3-02 Terminal A1 Signal Level Selection 0 to 31 0 <	Digital	H2-01	Function Selection (relay)		E	0	0	0
Bit Sol Terminal A1 Signal Level Selection 0 to 31 0 0 0 H3-02 Terminal A1 Signal Level Selection 0 to 31 0 <	nction utputs	H2-02		0 to 192	0	0	0	0
Bit Sol Terminal A1 Signal Level Selection 0 to 31 0 0 0 H3-02 Terminal A1 Signal Level Selection 0 to 31 0 <	Iti-Fur	H2-03			2	0	0	0
H3-02 Terminal A1 Function Selection 0 to 31 0 0 0 0 H3-03 Terminal A1 Gain Setting -999.9 to 999.9 to 999.9 0.00% 0 0 H3-04 Terminal A1 Bias Setting -999.9 to 999.9 0.00% 0 0 H3-09 Terminal A2 Signal Level Selection 0 to 3 2 0 0 H3-10 Terminal A2 Signal Level Selection 0 to 3 2 0 0 H3-10 Terminal A2 Cain Setting -999.9 to 999.9 0.00% 0	Σ		Watt Hour Output Unit Selection					
H3-03 Terminal A1 Gain Setting -999.9 to 999.9 100.0% ○ ○ H3-04 Terminal A2 Bias Setting -999.9 to 999.9 0.0% ○ ○ H3-04 Terminal A2 Signal Level Selection 0 to 3 2 ○ ○ H3-10 Terminal A2 Gain Setting -999.9 to 999.0 0.0% ○ ○ H3-11 Terminal A2 Gain Setting -999.9 to 999.0 0.0% ○ ○ H3-11 Terminal A2 Input Bias -999.9 to 999.0 0.0% ○ ○ H3-13 Analog Input Filter Time Constant 0.00 to 2.00 0.03 s ○ ○ H3-16 Multi-Function Analog Input Terminal A2 Offset -500 to 500 0 ○ ○ H4-01 Multi-Function Analog Output Terminal AM 000 to 999 100.0% S S S H4-02 Multi-Function Analog Output Terminal AM Gain 999.9 0.0% ○ ○ ○ H4-03 Multi-Function Analog Output Terminal AM Gain 999.9 0.0% ○ ○ ○								
H3-04 Terminal A1 Bias Setting -999.9 to 999.9 0.0% ○ ○ H3-09 Terminal A2 Signal Level Selection 0 to 3 2 ○ ○ H3-10 Terminal A2 Cain Selting -999.9 to 999.9 0.0% ○ ○ H3-11 Terminal A2 Input Bias -999.9 to 999.9 0.0% ○ ○ H3-12 Terminal A2 Input Bias -999.9 to 999.9 0.0% ○ ○ H3-13 Analog Input Filter Time Constant 0.00 to 2.00 0.03 s ○ ○ H3-14 Analog Input Filter Time Constant 0.00 to 2.00 0.03 s ○ ○ H3-17 Multi-Function Analog Input Terminal A1 Offset -500 to 500 0 ○ ○ H4-01 Multi-Function Analog Output Terminal AM Gain 999.9 100.0% S S S H4-02 Multi-Function Analog Output Terminal AM Bias 999.9 0.0% ○ ○ H4-03 Multi-Function Analog Output Terminal AM Bias 999.9 0.0% ○ ○ <								
H3-09 Terminal A2 Signal Level Selection 0 to 3 2 0 0 H3-10 Terminal A2 Function Selection 0 to 31 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
H3-10 Terminal A2 Function Selection 0 to 31 0								
H3-14 Malage input reminal allade selection 1,2,7 7 0 0 0 H3-16 Multi-Function Analog Input Terminal A1 Offset -500 to 500 0	outs							
H3-14 Malage input reminal allade selection 1,2,7 7 0 0 0 H3-16 Multi-Function Analog Input Terminal A1 Offset -500 to 500 0	<u> </u>							
H3-14 Malage input reminal allade selection 1,2,7 7 0 0 0 H3-16 Multi-Function Analog Input Terminal A1 Offset -500 to 500 0	og	H3-12	Terminal A2 Input Bias	-999.9 to 999.9	0.0%	0	0	0
H3-14 Malage input reminal allade selection 1,2,7 7 0 0 0 H3-16 Multi-Function Analog Input Terminal A1 Offset -500 to 500 0	nal	H3-13	Analog Input Filter Time Constant	0.00 to 2.00	0.03 s	0	0	0
H3-10 Terminal A1 Offset 500 0 <td>∣∢</td> <td>H3-14</td> <td>Analog Input Terminal Enable Selection</td> <td>1,2,7</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td>	∣∢	H3-14	Analog Input Terminal Enable Selection	1,2,7	7	0	0	0
H3-17 Terminal A2 Offset 500 0 <td></td> <td>H3-16</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		H3-16			0	0	0	0
store H4-01 Multi-Function Analog Output Terminal AM 000 to 999 102 ○ ○ H4-02 Multi-Function Analog Output Terminal AM Gain -999.9 to 999.9 100.0% S S S H4-03 Multi-Function Analog Output Terminal AM Gain -999.9 to 999.9 0.0% ○ ○ H5-01 Drive Slave Address 0 to 20 H 1F ○ ○ H5-02 Communication Speed Selection 0 to 8 3 ○ ○ H5-03 Communication Fault Detection Selection 0 to 3 3 ○ ○ H5-04 Stopping Method After Communication Fault Detection Selection 0,1 1 ○ ○ H5-05 Communication Fault Detection Selection 0,1 1 ○ ○ H5-06 Drive Transmit Wait Time 5 to 65 5 ms ○ ○ H5-07 RTS Control Selection 0,1 1 ○ ○ H5-10 Unit Selection for MEMOBUS Modbus Register 0025H 0,1 0 ○ ○		H3-17			0	0	0	0
H5-01 Drive Slave Address 0 to 20 H 1F O O H5-02 Communication Speed Selection 0 to 2 0 H 1F O O H5-03 Communication Speed Selection 0 to 2 0 O O O H5-03 Communication Parity Selection 0 to 3 3 O O O H5-05 Communication Fault Detection Selection 0,1 1 O O O H5-05 Communication Fault Detection Selection 0,1 1 O <td< td=""><td>on uts</td><td>H4-01</td><td>Multi-Function Analog</td><td></td><td>102</td><td>0</td><td>0</td><td>0</td></td<>	on uts	H4-01	Multi-Function Analog		102	0	0	0
H5-01 Drive Slave Address 0 to 20 H 1F O O H5-02 Communication Speed Selection 0 to 2 0 H 1F O O H5-03 Communication Speed Selection 0 to 2 0 O O O H5-03 Communication Parity Selection 0 to 3 3 O O O H5-05 Communication Fault Detection Selection 0,1 1 O O O H5-05 Communication Fault Detection Selection 0,1 1 O <td< td=""><td>Functi 1 Outpi</td><td>H4-02</td><td>Multi-Function Analog</td><td></td><td>100.0%</td><td>S</td><td>s</td><td>s</td></td<>	Functi 1 Outpi	H4-02	Multi-Function Analog		100.0%	S	s	s
H5-01 Drive Slave Address 0 to 20 H 1F O O H5-02 Communication Speed Selection 0 to 2 0 H 1F O O H5-03 Communication Speed Selection 0 to 2 0 O O O H5-03 Communication Parity Selection 0 to 3 3 O O O H5-05 Communication Fault Detection Selection 0,1 1 O O O H5-05 Communication Fault Detection Selection 0,1 1 O <td< td=""><td>Multi- Analoc</td><td>H4-03</td><td>Multi-Function Analog</td><td>– 999.9 to</td><td></td><td>0</td><td>0</td><td></td></td<>	Multi- Analoc	H4-03	Multi-Function Analog	– 999.9 to		0	0	
H5-02 Communication Speed Selection 0 to 8 3 0 0 0 H5-03 Communication Parity Selection 0 to 2 0								
No. No. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
H5-04 Stopping Method After Communication Error 0 to 3 3 0 0 H5-05 Communication Fault Detection Selection 0,1 1 0 0 H5-06 Drive Transmit Wait Time 5 to 65 5 ms 0 0 H5-07 RTS Control Selection 0,1 1 0 0 0 H5-07 RTS Control Selection 0,1 1 0 0 0 H5-07 RTS Control Selection 0,1 1 0 0 0 H5-07 RTS Control Selection 0,1 1 0 0 0 H5-10 Unit Selection for MEMOBUS/ Modbus Register 0025H 0,1 0	suc		Communication Parity Selection					
H5-11 Function Selection U,1 I U U H5-12 Run Command Method Selection 0,1 0	Inicatic	H5-04	Stopping Method After		3			
H5-11 Function Selection U,1 I U U H5-12 Run Command Method Selection 0,1 0	Commu	H5-05	Communication Fault Detection	0,1	1	0	0	0
H5-11 Function Selection U,1 I U U H5-12 Run Command Method Selection 0,1 0) snq		Drive Transmit Wait Time					
H5-11 Function Selection U,1 I U U H5-12 Run Command Method Selection 0,1 0	Aod.							
H5-11 Function Selection U,1 I U U H5-12 Run Command Method Selection 0,1 0	NS	H5-09		0.0 to 10.0	2.0 s	0	0	0
H5-11 Function Selection U,1 I U U H5-12 Run Command Method Selection 0,1 0	MOBL	H5-10	Modbus Register 0025H	0,1	0	0	0	0
H5-12 Run Command Method Selection 0,1 0 ○ ○ H6-01 Pulse Train Input Terminal RP Function Selection 0 to 3 0 ○ ○ ○ H6-02 Pulse Train Input Scaling 100 to 32000 1440 Hz ○ ○ ○ H6-03 Pulse Train Input Scaling 0.0 to 1000.0 100.0% ○ ○ ○ H6-04 Pulse Train Input Bias -100.0 to 1000.0 0.0% ○ ○	ME	H5-11		0,1	1	0	0	0
Ho-01 Function Selection 0.10.3 0<		H5-12	Run Command Method Selection	0,1	0	0	0	0
P F H6-02 Pulse Train Input Scaling 100 to 32000 1440 Hz ·<	ir ir	H6-01		0 to 3	0	0	0	0
Bit Intervolution Pulse Train Input Gam 0.0 to 1000.0 [100.0%] 0.0 to 2000.0 [100.0%]	se Tra /Outp		Pulse Train Input Scaling					
How of the last main input blast How of the last	Pul:							
	_			0.00 to 2.00				

Ę					Con	trol M	ode
Function	No.	Name	Range	Def*1	V/f	OLV	PM
Pulse Train Input/Output	H6-06	Pulse Train Monitor	000,031,101,102,	102	0	0	0
se Tr	H6-07	Terminal MP Selection Pulse Train Monitor Scaling	105,116,501,502 0 to 32000	1440 Hz	0	0	0
Puls	H6-08	Pulse Train Input Minimum Frequency	0.1 to 1000.0	0.5 Hz	0	0	0
	L1-01	Motor Overload Protection Selection	0 to 4,6	1	s	S	S
SU	L1-02	Motor Overload Protection Time	0.1 to 5.0	1.0 min	0	0	0
unctio	L1-03	Motor Overheat Alarm Operation Selection (PTC input)	0 to 3	3	0	0	0
tion F	L1-04	Motor Overheat Fault Operation Selection (PTC input)	0 to 2	1	0	0	0
Motor Protection Functions	L1-05	Motor Temperature Input Filter Time (PTC input)	0.00 to 10.00	0.20 s	0	0	0
otor F	L1-13	Continuous Electrothermal Operation Selection	0,1	1	0	0	0
Σ	L1-22*2	Leakage Current Filter 1	0.0 to 60.0	20.0	0	0	0
	L1-23*2	Leakage Current Filter 2 Momentary Power Loss	0.0 to 60.0	1.0	0	0	0
	L2-01	Operation Selection	0 to 2	0	0	0	0
SSC	L2-02	Momentary Power Loss Ride-Thru Time	0.0 to 25.5		0	0	0
er Lo	L2-03	Momentary Power Loss Minimum Baseblock Time	0.1 to 5.0	dep. on drive	0	0	0
Momentary Power Loss	L2-04	Momentary Power Loss Voltage Recovery Ramp Time	0.0 to 5.0	capacity	0	0	0
tary	L2-05*3	Undervoltage Detection Level (Uv)	150 to 210		0	0	0
nen	L2-06	KEB Deceleration Time	0.0 to 200.0	0.0 s	0	0	0
lon	L2-07	KEB Acceleration Time	0.0 to 25.5	0.0 s	0	0	0
2	L2-08	KEB Start Output Frequency Reduction	0 to 300	100% E1-01×	0	0	0
	L2-11*3	Desired DC Bus Voltage during KEB	150 to 400	1.22 (V)	0	0	0
	L3-01	Stall Prevention Selection during Acceleration	0 to 2	1	0	0	0
	L3-02	Stall Prevention Level during Acceleration	0 to 150	dep. on drive capacity	0	0	0
	L3-03	Stall Prevention Limit during Acceleration	0 to 100	50%	0	0	0
	L3-04	Stall Prevention Selection	0 to 4,7	1	S	s	S
ns	L3-05	during Deceleration Stall Prevention Selection during Run	0 to 2	1	0	×	0
ctio	L3-06	Stall Prevention Level	30 to 150	dep. on	0	×	0
Fun		during Run		drive capacity	0	$\hat{}$	0
ntion	L3-11 L3-17*3	ov Suppression Function Selection Overvoltage Suppression and Stall	0,1 150 to 400	0 370 V	0	0	0
Stall Prevention Functions	L3-20	Prevention Desired DC Bus Voltage Main Power Circuit Voltage	0.00 to 5.00	1.00	0	0	0
all F		Adjustment Gain				0	
ų	L3-21	Accel/Decel Rate Calculation Gain Deceleration Time at Stall	0.00 to 200.00 0.0 to	1.00	0	0	0
	L3-22	Prevention during Acceleration	6000.0	0.0 s	×	×	0
	L3-23	Automatic Reduction Selection for Stall Prevention during Run	0,1	0	0	0	0
	L3-24	Motor Acceleration Time for Inertia Calculations	0.001 to 10.000	dep. on drive capacity	0	0	0
	L3-25	Load Inertia Ratio	0.0 to 1000.0	1.0	0	0	0
	L4-01	Speed Agreement Detection Level	0.0 to 400.0	0.0 Hz	Õ	0	0
Ę	L4-02	Speed Agreement Detection Width	0.0 to 20.0	2.0 Hz	0	0	0
actic	L4-03	Speed Agreement Detection Level (+/ -)	-400.0 to 400.0	0.0 Hz	0	0	0
Det	L4-04	Speed Agreement Detection Width (+/-)	0.0 to 20.0	2.0 Hz	0	0	0
Frequency Detection	L4-05	Frequency Reference Loss Detection Selection	0,1	0	0	0	0
edn	L4-06	Frequency Reference at Reference Loss	0.0 to 100.0	80.0%	0	0	0
μŢ	L4-07	Frequency Detection Conditions	0,1	0	0	0	0
÷	L4-08	Speed Agreement Condition Selection	0,1	0	0	0	0
ese	L5-01 L5-02	Number of Auto Restart Attempts Auto Restart Operation Selection	0 to 10 0,1	0	0	0	0
Ë	L5-02	Fault Reset Interval Time	0.5 to 600.0	10.0 s	0	0	0
Fault Reset	L5-05	Fault Reset Operation Selection	0.0 10 000.0	0	0	0	Ō
	L6-01	Torque Detection Selection 1	0 to 8	0	Ō	0	0
Ì	L6-02	Torque Detection Level 1	0 to 300	150%	0	0	0
ioi	L6-03	Torque Detection Time 1	0.0 to 10.0	0.1 s	0	0	0
ect	L6-04	Torque Detection Selection 2	0 to 8	0	0	0	0
Det	L6-05	Torque Detection Level 2	0 to 300 0.0 to 10.0	150% 0.1 s	0	0	0
ne	L6-06	Torque Detection Time 2 Mechanical Weakening					
Overtorque Detection	L6-08	(oL5) Detection Operation Mechanical Weakening	0 to 8	0	0	0	0
ŇŎ	L6-09	Detection Speed Level Mechanical Weakening Detection Time	-110.0 to 110.0 0.0 to 10.0	110% 0.1 s	0	0	0
	L6-10 L6-11	Mechanical Weakening Detection Start Time	0.0 to 65535	0.15	0	0	0

*1: Default setting depends on the control mode.
*2: L1-22 and L1-23 can only be displayed / setting when C6-02=B.
*3: Values shown here are for 200 V class drives. Double the value when using a 400 V class drive.

Ľ					Con	trol N	/lode	L					Con	trol N	lode
Function	No.	Name	Range	Def*1	V/f	OLV	PM	Function	No.	Name	Range	Def*1	V/f	OLV	PM
щ	L7-01	Forward Torque Limit	0 to 300	200%	×	0	×	<u> </u>	o2-01	LO/RE Key Function Selection	0,1	1	0	0	0
Ŧ	L7-01	Reverse Torque Limit	0 to 300	200%	×	ŏ	×		02-01	STOP Key Function Selection	0,1	1	0	0	0
іЩ	-	Forward Regenerative Torque Limit	0 to 300	200%	X	Ō	×	sus	02-02	User Parameter Default Value	0 to 2	0	0	0	0
Torque Limit		Reverse Regenerative Torque Limit	0 to 300	200%	×	0	×	Functions	02 00		0102	dep. on		0	\vdash
nb	L7-04	· · ·	5 to 10000		×	0	×	Ĕ	o2-04	Drive Model Selection	0 to FF	drive	0	0	0
Ore	L7-00	Torque Limit Integral Time Constant	5 10 10000	200 1115	^					Francisco Deference Cetting		capacity			
-	L7-07	Torque Limit Control Method Selection during Accel/Decel	0,1	0	×	0	×	vpac	o2-05	Frequency Reference Setting Method Selection	0,1	0	0	0	0
	L8-01	Internal Dynamic Braking Resistor Protection Selection (ERF type)	0,1	0	0	0	0	Operator Keypad	o2-06	Operation Selection when Digital Operator is Disconnected	0,1	0	0	0	0
	L8-02	Overheat Alarm Level	50 to 130	dep. on drive	0	0	0	erato	o2-07	Motor Direction at Power Up when Using Operator	0,1	0	0	0	0
	L8-03	Overheat Pre-Alarm	0 to 4	capacity 3	0	0	0	ğ	o2-09	Initialization mode	0 to 3	dep. on	0	0	0
	L8-05	Operation Selection Input Phase Loss Protection Selection	0,1	0	0	0	0	2 57	o3-01	Copy Function Selection	0 to 3	drive spec. O	0	0	0
	L8-07	Output Phase Loss Protection	0 to 2	1	Õ	Ō	$\overline{0}$	Copy/Read Functions	03-02	Copy Allowed Selection	0, 1	0	0	0	0
		Output Ground Fault	0102	dep. on	0			0.		Accumulated Operation Time Setting	0 to 9999	0	0	0	0
Ľ	L8-09		0,1	drive	0	0	0					0	0	0	0
ctic		Detection Selection	0.1	capacity				σ		Accumulated Operation Time Selection	0,1	-		-	
tec		Heatsink Cooling Fan Operation Selection	0,1	0	0	0	0	<u>-</u> 2	04-03	<u> </u>	0 to 9999	0	0	0	0
2r		Heatsink Cooling Fan Operation Delay Time	0 to 300	60 s	0	0	0	Period	04-05	Capacitor Maintenance Setting	0 to 150	0%	0	0	0
e		Ambient Temperature Setting	- 10 to 50	40°C	0	0	0	8	04-07	Soft Charge Bypass Relay	0 to 150	0%	0	0	0
wa.	LØ-15	oL2 Characteristics Selection at Low Speeds	0,1	1	0	0	0	an		Maintenance Setting				~	
Hardware Protection	L8-18	Soft CLA Selection	0,1	dep. on C6-02	0	0	×	Maintenance	04-09	IGBT Maintenance Setting	0 to 150	0%	0	0	0
Η̈́			- /	00-02	-	ļ		ain	04-11	U2, U3 Initialize Selection	0,1	0	0	0	0
	L8-19	Frequency Reduction Rate	0.1 to 1.0	0.8	0	0	0	Σ	04-12	kWh Monitor Initialize Selection	0,1	0	0	0	0
		during oH Pre-Alarm							04-13	Number of Run Commands	0,1	0	0	0	0
	L8-29	Current Unbalance Detection (LF2)	0,1	1	×	×	0			Initialize Selection		Ľ,			Ľ
	L8-35	Installation Method Selection	0 to 3	dep. on drive	0	0	0	DWEZ Parameters	q1-01			7]		
	L8-38	Carrier Frequency Reduction	0 to 2	capacity	0	0	0	3WE	to	DWEZ Parameters	-	-	0	0	0
	L8-40	Carrier Frequency Reduction Time	0.00 to 2.00	0.50	0	0	0	Par	q6-07						
	L8-41	High Current Alarm Selection	0,1	0	0	0	0		r1-01	DWEZ Connection Parameter 1 (upper)		0	×	0	0
	L8-51	STO Level	0.0 to 150.0	0.0%	×	×	0		r1-02	DWEZ Connection Parameter 1 (lower)		0	×	0	0
	L8-54	STO Bias Detection Selection	0,1	1	Х	×	0		r1-03	DWEZ Connection Parameter 2 (upper)		0	Х	0	0
	n1-01	Hunting Prevention Selection	0,1	1	0	×	X		r1-04	DWEZ Connection Parameter 2 (lower)		0	×	0	0
Hunting Prevention	n1-02	Hunting Prevention Gain Setting	0.00 to 2.50	1.00	0	×	X		r1-05	DWEZ Connection Parameter 3 (upper)		0	×	0	0
ent		Hunting Prevention Time		dep. on	~				r1-06	DWEZ Connection Parameter 3 (lower)		0	×	0	0
Hu rev	n1-03	Constant	0 to 500	drive capacity	0	×	×		r1-07	DWEZ Connection Parameter 4 (upper)		0	×	Ō	Ō
<u> </u>	n1-05	Hunting Prevention Gain while in Reverse	0.00 to 2.50	0.00	0	×	×		r1-08	DWEZ Connection Parameter 4 (lower)		0	×	Ō	Ō
ion		Speed Feedback Detection			_				r1-09	DWEZ Connection Parameter 5 (upper)		0	×	Õ	Ō
stect	n2-01	Control (AFR) Gain	0.00 to 10.00	1.00	×	0	×		r1-10	DWEZ Connection Parameter 5 (lower)		0	×	Õ	Õ
Speed Feedback Detection Control Function		Speed Feedback Detection				<u> </u>			r1-11	DWEZ Connection Parameter 6 (upper)		0	×	0	$\overline{\circ}$
dbac ol Fu	n2-02	Control (AFR) Time Constant	0 to 2000	50 ms	×	0	×		r1-12	DWEZ Connection Parameter 6 (lower)		0	×	0	$\overline{0}$
ontro		Speed Feedback Detection		750					r1-12	DWEZ Connection Parameter 7 (upper)		0	×	0	0
C	n2-03	Control (AFR) Time Constant 2	0 to 2000		×	0	×					0	×	0	0
Sp				ms					r1-14	DWEZ Connection Parameter 7 (lower)		0	×		-
g	n3-01	High-Slip Braking Deceleration	1 to 20	5%	0	×	×	s	r1-15	DWEZ Connection Parameter 8 (upper)				0	0
Slip Braking		Frequency Width	100 +- 000	1500/	0			Parameters	r1-16	DWEZ Connection Parameter 8 (lower)		0	×	0	0
Bra		High-Slip Braking Current Limit		150%	0	×	×	an	r1-17	DWEZ Connection Parameter 9 (upper)		0	×	0	0
рE		High-Slip Braking Dwell Time at Stop		1.0 s	0	×	×	ar	r1-18	DWEZ Connection Parameter 9 (lower)		0	×	0	0
		High-Slip Braking Overload Time		40 s	0	×	×		r1-19	DWEZ Connection Parameter 10 (upper)		0	×	0	0
High-		Overexcitation Deceleration Gain	1.00 to 1.40		0	0	×	ţi	r1-20	DWEZ Connection Parameter 10 (lower)	0000 to FFFF(H)	0	×	0	0
Ξ		High-Slip Suppression Current Level	0 to 150	100%	0	0	×	je j	r1-21	DWEZ Connection Parameter 11 (upper)		0	×	0	0
<u> </u>	n3-23	Overexcitation Operation Selection	0 to 2	0	0	0	×	Connectio	r1-22	DWEZ Connection Parameter 11 (lower)		0	×	0	0
Online Tuning of Motor Line-to-Line Resistance							1	Ŭ		DWEZ Connection Parameter 12 (upper)		0	×	0	0
ing of e Resi	n6-01	Line-to-Line Motor	0,1	1	×	0	×			DWEZ Connection Parameter 12 (lower)		0	×	0	0
to-Lin		Resistance Online Tuning	-, -					DWEZ		DWEZ Connection Parameter 13 (upper)		0	×	0	0
Onli Line-										DWEZ Connection Parameter 13 (lower)		0	×	0	0
	n8-45	Speed Feedback Detection Control Gain	0.0 to 10.0	0.8	×	×	0			DWEZ Connection Parameter 14 (upper)		0	×	0	0
0		Pull-In Current Compensation Time Constant	0.0 to 100.0		×	×	0			DWEZ Connection Parameter 14 (lower)		0	×	0	0
ntr		Pull-In Current	0,20 to 200	30%	×	×	0			DWEZ Connection Parameter 15 (upper)		0	×	0	0
õ		Load Current	-200.0 to 200.0		×	×	0			DWEZ Connection Parameter 15 (lower)		0	×	0	0
or (n8-51	Acceleration Pull-In Current	0 to 200	50%	×	×	0		r1-31	DWEZ Connection Parameter 16 (upper)		0	×	0	0
Permanent Magnet (PM) Motor Control	n8-54	Voltage Error Compensation Time Constant	0.00 to 10.00	1.00 s	×	×	0		r1-32	DWEZ Connection Parameter 16 (lower)		0	×	0	0
Ň	n8-55	Load Inertia	0 to 3	0	×	×	0		r1-33	DWEZ Connection Parameter 17 (upper)		0	×	0	0
Ň	n8-62*2	Output Voltage Limit	0.0 to 230.0		×	×	0			DWEZ Connection Parameter 17 (lower)		0	×	0	0
t (F	n8-63	Output Voltage Limit Gain 1	0.00 to 100.00	1.00	×	×	Ō		-	DWEZ Connection Parameter 18 (upper)		0	×	Ō	Ō
aut		Speed Feedback Detection Control	0.00 to							DWEZ Connection Parameter 18 (lower)		0	×	Ō	Ō
lag	n8-65	Gain during ov Suppression	10.00	1.50	×	×	0			DWEZ Connection Parameter 19 (upper)		0	×	Õ	Ō
₹	n8-68	Output Voltage Limit Gain 2	0.50 to 1.50	0.95	×	×	0			DWEZ Connection Parameter 19 (lower)		0	×	Õ	Ō
nen	n8-87	Output Voltage Limit Selection	0,1	0.00	×	×	Ō		r1-39	DWEZ Connection Parameter 20 (upper)		0	×	Õ	Ō
lar.	n8-88	Output Voltage Limit Switch Current Level	0 to 400	400%	×	×	Õ		r1-40	DWEZ Connection Parameter 20 (lower)		0	×	Õ	Ō
ern		Output Voltage Limit Switch Current								Motor Selection 1/2	1,2	1	0	Õ	×
ъ	n8-89	Hysteresis	0 to n8-88	3%	×	×	0			Auto-Tuning Mode Selection	0,2,3	dep. on	0	0	×
	n8-90	Output Voltage Limit Switch Speed	0 to 200	200%	×	×	0		T1-01	Motor Rated Power	0,2,3 0.03 to 650.00	drive	0	0	×
	01-01	Drive Mode Unit Monitor Selection	104 to 810	106	ô	Ô	0	bu	T1-02 T1-03*2	Motor Rated Voltage	0.03 to 650.00	capacity 200.0 V	0	0	×
		User Monitor Selection After Power Up	1 to 5	100	0	0	0	Motor Tuning	1100-	inition nated voltage	10 to 200% of	dep. on			
sbr		Digital Operator Display Selection		0	0	$\overline{0}$	0	<u>ا</u>	T1-04	Motor Rated Current		drive	0	0	×
ettir								e e	T1.05	Motor Page Fragueses	drive rated current	capacity			
۲, S	01-05	LCD Contrast Control	0 to 5	3	0	0	0	ΙĬ		Motor Base Frequency	0.0 to 400.0	60.0 Hz	0	0	×
Display Settings	o1-10	Frequency Reference Setting	1 to 60000	dep. on	0	0	0			Number of Motor Poles	2 to 48	4	0	0	×
Dis		and User-Set Display		drive						Motor Base Speed	0 to 24000		0	0	×
	o1-11	Frequency Reference Setting /	0 to 3	capacity	0	0	0		T1-11	Motor Iron Loss	0 to 65535	14 W	0	×	×
		Decimal Display	-					*1:	Default s	etting depends on the contro	mode				

*2: Values shown here are for 200 V class drives. Double the value when using a 400 V class drive. 15

Basic Instructions

Outstanding operability! Separate settings for each application enables quick set-up.

Operator Names and Functions

Data display (5-digit) – Displays frequency, parameter number, and other data.

LO/RE light Lights to indicate that the operator is set for LOCAL.

ESC key Lets the user back up to the previous display screen.

Right arrow key Scrolls the cursor to the right.


RESET key Resets a fault.

RUN light Lights when the Run command is present.

RUN key Issues a Run command.

Glossary

Used as a quick guide for the abbreviations used on the display screen. Details listed on the next page.

LED panel

More information listed below.

LO/RE key

Determines where the Run command and frequency reference come from: the keypad (LOCAL) or the control terminals (REMOTE).

ENTER key

Press to enter values, edit parameters, and set the control mode. Press this key to proceed to the next screen when scrolling through various menu displays.

Com port

For connecting to a PC (DriveWizard or DriveWorksEZ), a USB copy unit or a LCD operator.

Up arrow key

Scrolls up through the display screen, and increases a selected value.

Down arrow key

Scrolls down through the display screen, and decreases a selected value.

STOP key Issues a Stop command.

8.8	.8.8.	8. LALM	REV
ESC	۸	° ₩	
RESET	V	ENTER	5
⊘ RU	NØ	STOP	4

LED Display Guide

LED	ON	Flashing	OFF
ALM	A fault has occurred.	 Alarm situation detected. Operator error (OPE) Auto-Tuning fault occurred. 	Normal operation
REV	Motor is rotating in reverse.		Motor is rotating forward.
DRV	 In the "Drive Mode" Executing Auto-Tuning 	DriveWorksEZ is connected.	Programming Mode
FOUT	Output frequency		—
• <u>LO</u> RE	Run command assigned to the operator (LOCAL)		Control assigned to remote location
	During run	During deceleration Run command is present but the frequency reference is zero.	Drive is stopped.

How the RUN light works:

Drive output f	requency				
Run comman	d	.			
Frequency re	ference	 			1
RUN light	OFF	ON	Flashing	OFF	Flashing

Operation Example

Using the LED Operator to Run the Drive

Drive Mode: Run and Stop commands, displays operation status such as the frequency reference, output frequency, output current, output voltage, etc.

How to Monitor the Frequency Reference

				Steps	Key
Turn the power on.		F 0.00		Use the arrow keys to select the digits	ENTER
Set the drive for LOCA The frequency reference is disp	RE	LO should light.		to set.	RESET
Displays the direction (forward).		For		Press enter to save the new value.	the value displayed.
Displays the output frequency.		0.0 0	ľ	Monitor Mode: Displays ope Steps	eration status and i Key
Displays the output current.		0.00A		Select a monitor.	ENTER
Displays the output voltage.	~	0.0 u		Displays U1-01, the frequency reference monitor.	ESC
Displays the beginning the Monitor Menu.	g of	flashing		Select another monitor.	:
Displays the top of the /erify Menu.		flashing urFy		Back up to the top of the Monitor Menu.	Esc Press once.
Displays the top of the Setup Mode.		flashing SCUP	ן י	/erify Menu: Lists all parameter	s that have been cha ther by the user or fro
Displays the top of the parameter settings me		"PAr		Steps	Key
Displays the top of the Auto-Tuning Mode.		Ĩ A.C.Un		Lists parameters that have been changed in order. Pressing Enter displays	ENTER
Returns back to the frequency reference disp	lay.			Parameters that have been changed from their default	
e will flash when it is possil	ble to change the s	etting.		values are listed in order.	:
				Returns to the top of the Verify Menu.	ESC Press once.

Press Esc to go back to the previous display screen.

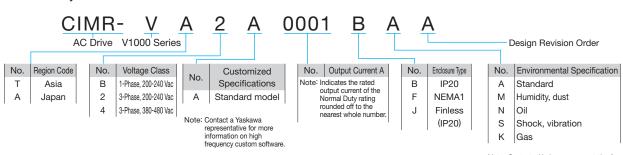
Setup Mode

The list of Applications Presets can be accessed in the Setup Mode. Each Application Preset automatically programs drive parameters to their optimal settings specific to the application selected. All parameters affected by the Application Preset are then listed as Preferred Parameters for quick access. Selecting a Water Supply Pump (A1-06=1)

J		
Steps	Key	Result/Display
Application Selection	AJ ENTER	` APPL `
		ÖÖ
	RESET	00
Select, "Water Supply Pump".		OÏ
		"End" appears while the drive saves the new data.
All parameters relating to the preset values for a water supply		" APPL"
pump application are then listed as Preferred Parameters.	Scroll to the Preferred Parameter using the up arrow key and see which parameters have been selected.	

Water Su	Nater Supply Pump Application Presets									
No.	Parameter Name	Optimum Setting								
A1-02	Control Method Selection	0: V/f control								
b1-04	Reverse Operation Selection	1: Reverse disabled								
C1-01	Acceleration Time 1	1.0 (s)								
C1-02	Deceleration Time 1	1.0 (s)								
C6-01	Normal/Heavy Duty Selection	1: Normal Duty (ND)								
E1-03	V/f Pattern Selection	OF (H)								
E1-07	Mid Output Frequency	30.0 (Hz)								
E1-08	Mid Output Frequency Voltage	50.0 (V)								
L2-01	Momentary Power Loss Operation Selection	1: Enabled								
L3-04	Stall Prevention Selection during Deceleration	1: Enabled								

Preferred Parameters


Parameter Name	No.	Parameter Name
Frequency Reference Selection 1	E1-08	Mid Output Frequency Voltage (VC)
Run Command Selection 1	E2-01	Motor Rated Current
Reverse Operation Selection	H1-05	Multi-Function Digital Input Terminal S5 Function Selection
Acceleration Time 1	H1-06	Multi-Function Digital Input Terminal S6 Function Selection
Deceleration Time 1	H1-07	Multi-Function Digital Input Terminal S7 Function Selection
V/f Pattern Selection	L5-01	Number of Auto Restart Attempts
Mid Output Frequency	-	-
	Frequency Reference Selection 1 Run Command Selection 1 Reverse Operation Selection Acceleration Time 1 Deceleration Time 1 V/f Pattern Selection	Frequency Reference Selection 1 E1-08 Run Command Selection 1 E2-01 Reverse Operation Selection H1-05 Acceleration Time 1 H1-06 Deceleration Time 1 H1-07 V/f Pattern Selection L5-01

Product Lineup

				Num	ber in parenthesis indicates t	he rated output current.
Motor Capacity kW	Three-Pha	ase 200 V	Single-Ph	ase 200 V	Three-Pha	ase 400 V
KVV	Normal Duty	Heavy Duty	Normal Duty	Heavy Duty	Normal Duty	Heavy Duty
0.1		CIMR-VA2A0001 (0.8 A)		CIMR-VABA0001 (0.8 A)		
0.2	CIMR-VA2A0001 (1.2 A)	CIMR-VA2A0002 (1.6 A)	CIMR-VABA0001 (1.2 A)	CIMR-VABA0002 (1.6 A)		CIMR-VA4A0001 (1.2 A)
0.4	CIMR-VA2A0002 (1.9 A)	CIMR-VA2A0004 (3 A)	CIMR-VABA0002 (1.9 A)	CIMR-VABA0003 (3 A)	CIMR-VA4A0001 (1.2 A)	CIMR-VA4A0002 (1.8 A)
0.75	CIMR-VA2A0004 (3.5 A)	CIMR-VA2A0006 (5 A)	CIMR-VABA0003 (3.3 A)	CIMR-VABA0006 (5 A)	CIMR-VA4A0002 (2.1 A)	CIMR-VA4A0004 (3.4 A)
1.1	CIMR-VA2A0006 (6 A)	CIMR-VA2A0008* (6.9 A)	CIMR-VABA0006 (6 A)			
1.5	CIMR-VA2A0008* (8 A)	CIMR-VA2A0010 (8 A)		CIMR-VABA0010 (8 A)	CIMR-VA4A0004 (4.1 A)	CIMR-VA4A0005 (4.8 A)
2.2	CIMR-VA2A0010 (9.6 A)	CIMR-VA2A0012 (11 A)	CIMR-VABA0010 (9.6 A)	CIMR-VABA0012 (11 A)	CIMR-VA4A0005 (5.4 A)	CIMR-VA4A0007 (5.5 A)
3.0	CIMR-VA2A0012 (12 A)	CIMR-VA2A0018* (14 A)	CIMR-VABA0012 (12 A)		CIMR-VA4A0007 (6.9 A)	CIMR-VA4A0009 (7.2 A)
3.7	CIMR-VA2A0018* (17.5 A)	CIMR-VA2A0020 (17.5 A)		CIMR-VABA0018 (17.5 A)	CIMR-VA4A0009 (8.8 A)	CIMR-VA4A0011 (9.2 A)
5.5	CIMR-VA2A0020 (19.6 A)	CIMR-VA2A0030 (25 A)			CIMR-VA4A0011 (11.1 A)	CIMR-VA4A0018 (14.8 A)
7.5	CIMR-VA2A0030 (30 A)	CIMR-VA2A0040 (33 A)			CIMR-VA4A0018 (17.5 A)	CIMR-VA4A0023 (18 A)
11	CIMR-VA2A0040 (40 A)	CIMR-VA2A0056 (47 A)			CIMR-VA4A0023 (23 A)	CIMR-VA4A0031 (24 A)
15	CIMR-VA2A0056 (56 A)	CIMR-VA2A0069 (60 A)			CIMR-VA4A0031 (31 A)	CIMR-VA4A0038 (31 A)
18.5	CIMR-VA2A0069 (69 A)				CIMR-VA4A0038 (38 A)	

*: Available in Japan only

Model Number Key

Note: Contact a Yaskawa representative for more on environmental specifications.

Optimizing Control for Each Application

V1000 offers two separate performance ratings: Normal Duty and Heavy Duty.

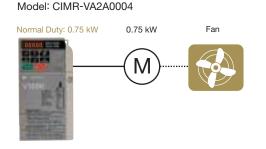
Heavy Duty is capable of creating more powerful torque, while Normal Duty allows the drive to operate a larger motor.

Difference between load ratings:

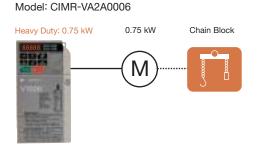
	Normal Duty Rating	Heavy Duty Rating
Parameter settings	C6-01 = 1 (default)	C6-01 = 0
Overload tolerance	120% for 60 s	150% for 60 s
Carrier frequency	Low carrier frequency (Swing PMW)*	High carrier frequency

*: Use Swing PWM to quiet undesirable motor noise generated when operating with a low carrier frequency.

Normal Duty Applications


Heavy Duty Applications

** The applications shown above can still use the ND rating, provided that the maximum torque required is no more than 120% for 60 s.


Selecting a Drive

For a fan application using a 0.75 kW motor, select CIMR-VA2A0004 and set it for Normal Duty performance.

Selecting a Drive

For a chain block application using a 0.75 kW motor, select CIMR-VA2A0006 and set it for Heavy Duty performance.

Use the table below to transition from VS mini V7 to the V1000 series (assumes a Heavy Duty rating).

Power		200		40	D V		
Supply	Three-	Phase	Single	-Phase	Three-Phase		
Max. Model	VS mini V7	V1000	VS mini V7	V1000	VS mini V7	V1000	
Motor	CIMR-	CIMR-	CIMR-	CIMR-	CIMR-	CIMR-	
Capacity kW	V7AA2	VA2A	V7AAB	VABA	V7AA4	VA4A	
0.1	0P1	0001	0P1	0001	_	_	
0.2	0P2	0002	0P2	0002	0P2	0001	
0.4	0P4	0004	0P4	0003	0P4	0002	
0.75	0P7	0006	0P7	0006	0P7	0004	
1.5	1P5	0010	1P5	0010	1P5	0005	
2.2	2P2	0012	2P2	0012	2P2	0007	
3.7	3P7	0020	3P7	0018	3P7	0011	
5.5	5P5	0030	—	-	5P5	0018	
7.5	7P5	0040	_	_	7P5	0023	
11	-	0056	_	_	_	0031	
15	_	0069	_	_	_	0038	

Parameter C6-01 sets the drive for Normal Duty or Heavy Duty performance.

200 V Class (Three-Phase/Single-Phase)

Value in brackets is for a single-phase drive.

20	UU V Class (Inree-Phase/Single-Phase) Value in brackets is for a single-phase drive.															
Mod	Three-Phase C	IMR-V	A2A	0001	0002	0004	0006	0008*10	0010	0012	0018*10	0020	0030	0040	0056	0069
IVIO	Single-Phase*2 C	IMR-V	ABA	0001	0002	0003	0006	—	0010	0012	—	0018 *1	—	—	—	—
M	ax. Applicable Motor		Normal Duty	0.2	0.4	0.75	1.1	1.5	2.2	3.0	3.7	5.5	7.5	11.0	15.0	18.5
Ca	apacity*3	kW	Heavy Duty	0.1	0.2	0.4	0.75	1.1	1.5	2.2	3.0	3.7	5.5	7.5	11.0	15.0
		Three-	Normal Duty	1.1	1.9	3.9	7.3	8.8	10.8	13.9	18.5	24.0	37.0	52.0	68.0	80.0
Input	Rated Input	phase	Heavy Duty	0.7	1.5	2.9	5.8	7.0	7.5	11.0	15.6	18.9	24.0	37.0	52.0	68.0
님	Current ^{*4} A	Single-	Normal Duty	2.0	3.6	7.3	13.8	—	20.2	24.0	-	-	-	-	-	—
		phase	Heavy Duty	1.4	2.8	5.5	11.0	—	14.1	20.6	_	35.0	—	-	-	—
	Rated Output		Normal Duty*6	0.5	0.7	1.3	2.3	3.0	3.7	4.6	6.7	7.5	11.4	15.2	21.3	26.3
	Capacity*5	kVA	Heavy Duty	0.3 *7	0.6 *7	1.1 *7	1.9 *7	2.6 *8	3.0 *8	4.2 *8	5.3 *8	6.7 * ⁸	9.5 *8	12.6 *8	17.9 *8	22.9 *8
	Rated Output Currer	nt A	Normal Duty*6	1.2	1.9	3.5 (3.3)	6.0	8.0	9.6	12.0	17.5	19.6	30.0	40.0	56.0	69.0
		n A	Heavy Duty	0.8 *7	1.6 *7	3.0 *7	5.0 *7	6.9 *8	8.0 *8	11.0 *8	14.0 *8	17.5 *8	25.0 *8	33.0 *8	47.0 *8	60.0 *8
Output	Overload Tolerance				Normal Duty Rating: 120% of rated output current for 60 s. Heavy Duty Rating: 150% of rated output current for 60 s. (Derating may be required for repetitive loads)											
	Carrier Frequency				2 kHz (user-set, 2 to 15 kHz possible)											
	Max. Output Voltage				Three-phase power supply: three-phase 200 to 240 V (relative to input voltage) Single-phase power supply: three-phase 200 to 240 V (relative to input voltage)											
	Max. Output Frequer	псу							400 I	Hz (use	r-set)					
	Rated Voltage/Rated Frequency			Three Single	e-phase -phase A	AC powe	er supply supply:	: three-pl single-pl	hase 200 hase 200) to 240) to 240	V 50/60 V 50/60	Hz Hz DC	power s	upply: 2	70 to 340) V *9
	Allowable Voltage Fluctuation							-1	5 to +1	0%						
Ver	बु Allowable Frequency Fluctuati		lation							±5%						
Power		Three-	Normal Duty	0.5	0.9	1.8	3.3	4.0	4.9	6.4	8.5	11.0	17.0	24.0	31.0	37.0
	Power Supp v*11 IVA	phase	Heavy Duty	0.3	0.7	1.3	2.7	3.2	3.4	5.0	7.1	8.6	11.0	17.0	24.0	31.0
		Single-	Normal Duty	0.5	1.0	1.9	3.6	—	5.3	6.3	-	-	_	-	-	—
		phase	Heavy Duty	0.4	0.7	1.5	2.9	-	3.7	5.4	-	9.2	-	-	-	—

*1: Heavy Duty (3.7 kW) only.

*2: Drives with a single-phase power supply input have three-phase output. Single-phase motors cannot be used.

*3: The motor capacity (kW) refers to a Yaskawa 4-pole, 60 Hz, 200 V motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.
 *4: Value displayed is for the input current when operating Yaskawa standard motors of max. applicable capacity with the rated load at the rated motor speed. This value may fluctuate based on the power supply side impedance, as well as the power supply transformer, input side reactor, and wiring conditions.

*5: Rated output capacity is calculated with a rated output voltage of 220 V.

*6: This value assumes a carrier frequency of 2 kHz. Increasing the carrier frequency requires a reduction in current.

*7: This value assumes a carrier frequency of 10 kHz. Increasing the carrier frequency requires a reduction in current.

*8: This value assumes a carrier frequency of 8 kHz. Increasing the carrier frequency requires a reduction in current.

*9: Not compliant with the UL standards when using a DC power supply. To meet CE standards, fuses should be installed. For details, refer to page 37.

*11: Rated input capacity is calculated with a power line voltage of 240 V \times 1.1.

400 V Class (Three-phase)

M	Model CIMR-VA4A			0002	0004	0005	0007	0009	0011	0018	0023	0031	0038
M	ax. Applicable Motor	Normal Duty	0.4	0.75	1.5	2.2	3.0	3.7	5.5	7.5	11.0	15.0	18.5
Ca	apacity*1 kW	Heavy Duty	0.2	0.4	0.75	1.5	2.2	3.0	3.7	5.5	7.5	11.0	15.0
Input	Rated Input Current*2 A	Normal Duty	1.2	2.1	4.3	5.9	8.1	9.4	14.0	20.0	24.0	38.0	44.0
Ing		Heavy Duty	1.2	1.8	3.2	4.4	6.0	8.2	10.4	15.0	20.0	29.0	39.0
	Rated Output	Normal Duty ^{*4}	0.9	1.6	3.1	4.1	5.3	6.7	8.5	13.3	17.5	23.6	29.0
	Capacity*3 kVA	Heavy Duty*5	0.9	1.4	2.6	3.7	4.2	5.5	7.0	11.3	13.7	18.3	23.6
	Rated Output Current A	Normal Duty*4	1.2	2.1	4.1	5.4	6.9	8.8	11.1	17.5	23.0	31.0	38.0
4		Heavy Duty*5	1.2	1.8	3.4	4.8	5.5	7.2	9.2	14.8	18.0	24.0	31.0
Output	Overload Tolerance			Normal Duty Rating: 120% of rated output current for 60 s. Heavy Duty Rating: 150% of rated output current for 60 s. (Derating may be required for repetitive loads)									
	Carrier Frequency			2 kHz (user-set, 2 to 15 kHz possible)									
	Max. Output Voltage			Three-phase 380 to 480 V (relative to input voltage)									
	Max. Output Frequency						400	Hz (user	-set)				
	Rated Voltage/Rated Frequ	iency	Three-	Three-phase AC power supply 380 to 480 V 50/60 Hz DC power supply: 510 to 680 V *6							30 V *6		
1	Allowable Voltage Fluctuation						-1	15 to +10)%				
ower	8 Allowable Frequency Fluctuation							±5%					
۱ <u>م</u>	Power Supply*7 kVA	Normal Duty	1.1	1.9	3.9	5.4	7.4	8.6	13.0	18.0	22.0	35.0	40.0
	Power Supply ^{*7} kVA	Heavy Duty	1.1	1.6	2.9	4.0	5.5	7.5	9.5	14.0	18.0	27.0	36.0

*1: The motor capacity (kW) refers to a Yaskawa 4-pole, 60 Hz, 400 V motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.
 *2: Value displayed is for the input current when operating Yaskawa standard motors of max. applicable capacity with the rated load at the rated motor speed. This value may fluctuate based on the power supply side impedance, as well as the power supply transformer, input side reactor, and wiring conditions.

*3: Rated output capacity is calculated with a rated output voltage of 440 V.

*4: This value assumes a carrier frequency of 2 kHz. Increasing the carrier frequency requires a reduction in current.

*5: This value assumes a carrier frequency of 8 kHz. Increasing the carrier frequency requires a reduction in current,

*6: Not compliant with the UL standards when using a DC power supply. To meet CE standards, fuses should be installed. For details, refer to page 37.

*7: Rated input capacity is calculated with a power line voltage of 480 V × 1.1.

Common Specifications

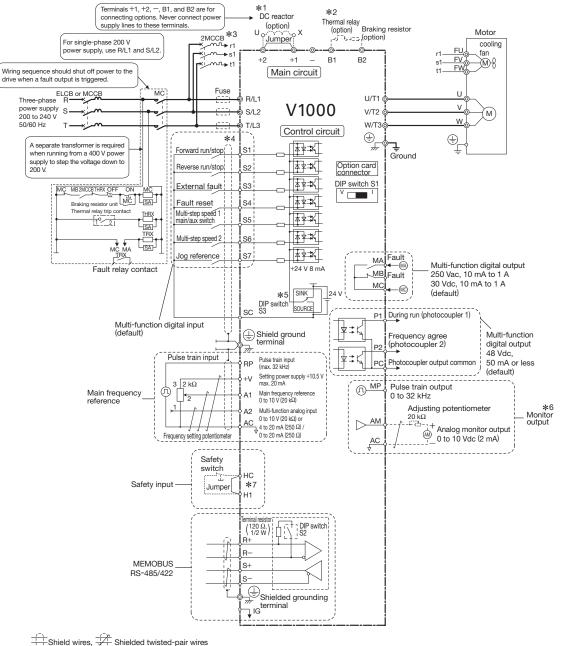
Rotational Auto-Tuning must be performed to achieve the performance described with Open Loop Vector Control.

Totatio	Item	Specifications
0	Control Method	Open Loop Vector Control (Current Vector), V/f Control, PM Open Loop Vector Control (for SPM and IPM motors)
- H	Frequency Control Range	0.01 to 400 Hz
-	Frequency Accuracy	Digital reference: within $\pm 0.01\%$ of the max. output frequency (-10 to +50°C)
	Temperature Fluctuation)	Analog reference: within $\pm 0.1\%$ of the max. output frequency ($25 \pm 10^{\circ}$ C)
-	Frequency Setting	Digital reference: 0.01 Hz
	Resolution	Analog reference: 1/1000 of max. frequency
(Dutput Frequency Resolution	20 bit of maximum output frequency (parameter E1-04 setting)
	Frequency Setting Signal	Main frequency reference: 0 to 10 Vdc (20 k Ω), 4 to 20 mA (250 Ω), 0 to 20 mA (250 Ω) Main speed reference : Pulse Train Input (max. 32 kHz)
Control Characteristics	Starting Torque	200% / 0.5 Hz (assumes Heavy Duty rating IM of 3.7 kW or less using Open Loop Vector Control), 50% / 6 Hz (assumes PM Open Loop Vector Control)
ter	Speed Control Range	1:100 (Open Loop Vector Control), 1:20 to 40 (V/f Control), 1:10 (PM Open Loop Vector Control)
Irac	Speed Control Accuracy	$\pm 0.2\%$ in Open Loop Vector Control (25 $\pm 10^{\circ}$ C) *1
Che	Speed Response	5 Hz in Open Loop Vector ($25 \pm 10^{\circ}$ C) (excludes temperature fluctuation when performing Rotational Auto-Tuning)
	Forque Limit	Open Loop Vector Control allows separate settings in four quadrants
onti	Accel/Decel Time	0.0 to 6000.0 s (4 selectable combinations of independent acceleration and deceleration settings)
	Braking Torque	 Short-time decel torque*2: over 150% for 0.1/0.2 kW motors, over 100% for 0.4/ 0.75 kW motors, over 50% for 1.5 kW motors, and over 20% for 2.2 kW and above motors (overexcitation braking/High-Slip Braking: approx. 40%) Continuous regen. torque: approx. 20% (approx. 125% with dynamic braking resistor option*3: 10% ED, 10 s, internal braking transistor)
1	//f Characteristics	User-selected programs, V/f preset patterns possible
	Main Control Functions	Momentary power loss ride-thru, Speed search, Overtorque detection, Torque limit, 17-step speed (max) Accel/decel time switch, S-curve accel/decel, 3-wire sequence, Auto-tuning (rotational, stationary tuning for resistance between lines), Dwell, Cooling fan on/off switch, Slip compensation, Torque compensation Frequency jump, Upper/lower limits for frequency reference, DC injection braking at start and stop Overexcitation braking, High slip braking, PID control (with sleep function), Energy saving control, MEMOBUS comm. (RS-485/422 max, 115.2 kbps), Fault restart, Application presets, DriveWorksEZ (customized function) Removable terminal block with parameter backup function
Ν	Notor Protection	Motor overheat protection based on output current
Ν	Nomentary Overcurrent Protection	Drive stops when output current exceeds 200% of Heavy Duty Rating
C	Overload Protection	Drive stops after 60 s at 150% of rated output current (Heavy Duty Rating)*4
	Overvoltage Protection	200 V class: Stops when DC bus exceeds approx. 410 V 400 V class: Stops when DC bus exceeds approx. 820 V (approx. 740 V when power supply voltage is less than 400 V
	Undervoltage Protection	Three-phase 200 V class: Stops when DC bus falls below approx. 190 V Single-phase 200 V class: Stops when DC bus falls below approx. 160 V Three-phase 400 V class: Stops when DC bus falls below approx. 380 V (approx. 350 V when the power supply voltage is less than 400 V
√ tec	Nomentary Power Loss Ride-Thru	Stops after approx. 15 ms (default). Parameter settings allow the drive to continue running if power loss lasts for up to approx. 2 s **
8	leatsink Overheat Protection	Protection by thermistor
В	Braking Resistance Overheat Protection	Overheat sensor for braking resistor (optional ERF-type, 3% ED)
5	Stall Prevention	Separate settings allowed during acceleration, and during run. Enable/disable only during deceleration.
0	Ground Fault Protection	Protection by electronic circuit *6
0	Charge LED	Charge LED remains lit until DC bus has fallen below approx. 50 V
A et	Area of Use	Indoors
A	Ambient Temperature	-10 to +50°C (open chassis), -10 to +40°C (NEMA Type 1)
۲ ا	Humidity	95 RH% or less (no condensation)
ing l	Storage Temperature	-20 to +60°C (short-term temperature during transportation)
	Altitude	Up to 1000 meters
d S	Shock	10 to less than 20 Hz (9.8 m/s ²) max., 20 to 55 Hz (5.9 m/s ²) max.
Stand	dards Compliance	·UL508C ·IEC/EN61800-3 IEC/EN61800-5-1 ·ISO/EN13849-1 Cat.3 PLd, IEC/EN6 508 SIL2
Prote	ection Design	IP20 open-chassis, NEMA Type 1 enclosure
*1: Sp	eed control accuracy may	vary slightly depending on installation *5: Varies by drive capacity. Drives smaller than 7.5 kW (CIMR-VA2A0040/

*1: Speed control accuracy may vary slightly depending on installation conditions or motor used.

*2: Momentary average deceleration torque refers to the deceleration torque from 60Hz down to 0 Hz. This may vary depending on the motor.

*3: Disable Stall Prevention during deceleration by setting L3-04 (Stall Prevention Selection during Deceleration) to 0 (disabled) or 3 (stall prevention with braking resistor) when using a Braking Resistor or Braking Resistor Unit. The motor may not stop within the deceleration time if this setting is not changed.

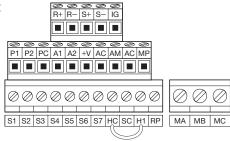

*4: Overload protection may be triggered at lower levels if output frequency is below 6 Hz.

5: Varies by drive capacity. Drives smaller than 7.5 kW (CIMR-VA2A0040/ CIMR-VA4A0023) require a separate Momentary Power Loss Recovery Unit to continue operating during a momentary power loss of 2 s.

*6: Protection may not be provided under the following conditions as the motor windings are grounded internally during run:
Low resistance to ground from the motor cable or terminal block.
Drive already has a short-circuit when the power is turned on.

Standard Connection Diagram

Example: 200 V Class



+ Shield wires, + Shielded twisted-pair wires Terminal symbols: ⊚ shows main circuit; ○ shows control circuit.

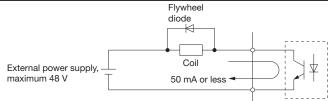
- *1: Remove the jumper between terminals +1 and +2 when installing an optional DC reactor.
- *2: The MC on the input side of the main circuit should open when the thermal relay is triggered.
- *3: Self-cooled motors do not require separate cooling fan motor wiring.
- *4: Connected using sequence (0 V com/sink mode) input signal (S1 to S7) from NPN transistor (default).
- *5: Sinking mode requires an internal 24 V power supply. Source mode requires an external power supply.
- *6: Monitor outputs work with devices such as analog frequency meters, current meters, voltmeters and watt meters. They cannot be used in a control system requiring feedback.
- *7: When using an external switch to stop the drive as a safety precaution, make sure the jumper creating the short circuit has been removed. Output is interrupted within 1 ms after the safety input is triggered. Make sure safety input wiring does not exceed 30 m.

Note: Input terminal functions may change when Application Presets are used

Control Circuit and Terminal Layout

Terminal Functions

Main Circuit Terminals


Terminal	Terminal Name	Function (Signal Level)					
R/L1	Main circuit power supply	Connects line power to the drive.					
S/L2		Drives with single-phase 200 V input power use terminals R/L1 and S/L2 only (do not use					
T/L3	input	T/L3).					
U/T1							
V/T2	Drive output	Connects to the motor.					
W/T3							
B1	Braking resistor /	Available for connecting a broking register or broking register unit					
B2	Braking resistor unit	Available for connecting a braking resistor or braking resistor unit.					
+1	DC reactor connection	These terminals are shorted for shipment. Remove the jumper creating the short to install					
+2	DC reactor connection	a DC choke.					
+1		For connecting a DC power supply.					
—	DC power supply input	DC power supply input terminals $(+1, -)$ are not UL/cUL and CE certified.					
Two terminals	Ground	Grounding terminal Grounding resistance for 200 V class: 100 Ω or less Grounding resistance for 400 V class: 10 Ω or less					

Control Circuit Input Terminals

Terminal	No.	Terminal Name	Function (Signal Level)					
	S1	Multi-function input 1	Closed: Forward run (default) Open: Stop					
	S2	Multi-function input 2	Closed: Reverse run (default) Open: Stop	Photocoupler				
Multi-	S3	Multi-function input 3	External fault, N.O. (default)	24 Vdc. 8 mA				
function	S4	Multi-function input 4	Fault reset (default)	Note: Drive preset to sinking mode. When using source				
digital	S5	Multi-function input 5	Multi-step speed reference 1 (default)	mode, set DIP switch S3 to allow for a 24 Vdc				
input	S6	Multi-function input 6	Multi-step speed reference 2 (default)	(±10%) external power supply.				
mput	S7	Multi-function input 7	Jog frequency (default)					
	SC	Multi-function input common (Control common)	Sequence common					
	RP	Multi-function pulse train input	Input frequency: 0.5 to 32 kHz (Duty cycle: 30 to 70%) (High level volt (Low level voltage: 0.0 to 0.8 V) (Input i	age: 3.5 to 13.2 V) mpedance: 3 k Ω)				
Main	+V	Analog input power supply	+10.5 V (max. allowable current 20 mA					
frequency reference	A1	Main frequency reference	Input voltage 0 to 10 Vdc (20 k Ω) resolution: 1/1000					
input	A2	Multi-function analog input	DIP switch S1 sets the terminal for a voltage or current input signal 0 to 10 Vdc (20 k Ω) resolution: 1/1000 4 to 20 mA or 0 to 20 mA (250 Ω) resolution: 1/500					
	AC	Frequency reference common	0 V					
Hardwire	HC	Power supply for hardwire baseblock command	+24 Vdc (max. 10 mA allowed)	Note: Remove the jumper when an external safety switch is installed to stop the drive.				
baseblock	H1	Safety Input	Open: Hardwire baseblock Closed: Normal operation	Output is interrupted within 1 ms after the safety input is triggered. Make sure safety input wiring does not exceed 30 m.				
Multi-function	MA	N.O. output	Fault (default)	Digital output				
digital output*1	MB	N.C. output	Fault (default)	30 Vdc (or less), 10 mA to 1 A				
aigital output *	MC	Digital output common		250 Vac (or less), 10 mA to 1 A				
Multi-function	P1	Photocoupler output 1	During run (default)	Photocoupler output *2				
photocoupler	P2	Photocoupler output 2	Frequency agree (default)	48 Vdc (or less), 50 mA (or less)				
output	PC	Photocoupler output common		40 VUC (UI 1855), 30 ITTA (UI 1855)				
	MP	Pulse train output	32 kHz (max.)					
Monitor output	AM	Analog monitor output	0 to 10 Vdc (2 mA or less) Resolution: 1/1000					
	AC	Monitor common	0 V					

*1: Refrain from assigning functions to terminals MA and MB that involve frequent switching, as doing so may shorten relay performance life. Switching life is estimated at 200,000 times (assumes 1 A, resistive load).

*2: Connect a flywheel diode as shown in the figure on the right when driving a reactive load such as a relay coil. Make sure the diode rating is greater than the circuit voltage.

Serial Communication Terminals

Туре	No.	Terminal Name	Function (Signal Level)						
	R+	Communications input (+)							
	R-	Communications input (-)	│ MEMOBUS communication: │ · Use a RS-485 or RS-422 cable to connect the drive.						
MEMOBUS	S+	Communications output (+)	· See a RS-465 of RS-422 cable to connect the drive. · RS-485/422 MEMOBUS communication protocol 115.2 kbps (max.)						
communication -	S-	Communications output (-)							
	IG	Shielded ground	0 V						

Enclosures

Enclosures of standard products vary depending on the model. Refer to the table below.

200 V Class (Single/Three-Phase)

Model	Three-Phase CIMR-VA2A		0001	0002	0004	0006	8000	0010	0012	0018	0020	0030	0040	0056	0069
woder	Single-Phase CIMR-VABA	NELEL EL EL EL E	0001	0002	0003	0006	-	0010	0012	-	0018*	-	-	-	-
Max	. Applicable Motor	Normal Duty	0.2	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5
Cap	acity kW	Heavy Duty	0.1	0.2	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15
Ope	Open-Chassis			Standard: IP20								IP00 (without top and bottom cover			
Encl	osure Panel [NEMA Type	1】	Option available (IP20 with NEMA 1 kit) Standard												

400 V Class (Three-Phase)

Model CIMR-VA4A		0001	0002	0004	0005	0007	0009	0011	0018	0023	0031	0038
Max. Applicable Motor	Normal Duty	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5
Capacity k ¹	V Heavy Duty	0.2	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15
Open-Chassis		Standard: IP20							IP00 (without top and bottom covers)			
Enclosure Panel [NEMA Ty	Option available (IP20 with NEMA 1 kit) Standard											

*: CIMR-VABA0018 does not have a Normal Duty rating

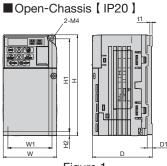


Figure 1

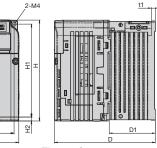


Figure 2

W1

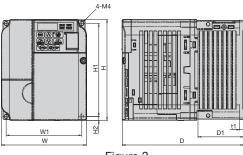
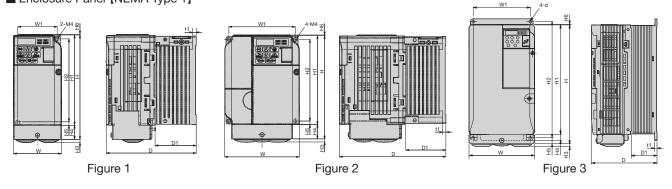
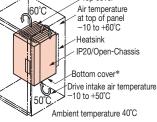



Figure 3

Voltage	Model	Figure					Weight	Cooling					
Class	CIMR- VA	Figure	W	Н	D	W1	H1	H2	D1	t1	Mtg. Holes	(kg)	Cooling
	2A0001B	4	68	128	76	56	118	5	6.5	3	M4	0.6	0.16
	2A0002B		68	128	76	56	118	5	6.5	3	M4	0.6	Self- cooled
	2A0004B	2	68	128	108	56	118	5	38.5	5	M4	0.9	coolea
200 V Class	2A0006B	2	68	128	128	56	118	5	58.5	5	M4	1.1	
(Three-	2A0008B		108	128	129	96	118	5	58	5	M4	1.7	
Phase)	2A0010B		108	128	129	96	118	5	58	5	M4	1.7	Fan
1 11000,	2A0012B	3	108	128	137.5	96	118	5	58	5	M4	1.7	cooled
	2A0018B		140	128	143	128	118	5	65	5	M4	2.4	
	2A0020B		140	128	143	128	118	5	65	5	M4	2.4	
	BA0001B	1	68	128	76	56	118	5	6.5	3	M4	0.6	
00014	BA0002B	1	68	128	76	56	118	5	6.5	3	M4	0.6	Self-
200 V Class	BA0003B	2	68	128	118	56	118	5	38.5	5	M4	1	cooled
(Single-	BA0006B		108	128	137.5	96	118	5	58	5	M4	1.7	
Phase)	BA0010B	3	108	128	154	96	118	5	58	5	M4	1.8	Fan
1 11000,	BA0012B	5	140	128	163	128	118	5	65	5	M4	2.4	cooled
	BA0018B		170	128	180	158	118	5	65	5	M4	3	coolea
	4A0001B		108	128	81	96	118	5	10	5	M4	1	0.16
	4A0002B		108	128	99	96	118	5	28	5	M4	1.2	Self- cooled
400 V	4A0004B		108	128	137.5	96	118	5	58	5	M4	1.7	coolea
Class (Three-	4A0005B	3	108	128	154	96	118	5	58	5	M4	1.7	
Phase)	4A0007B		108	128	154	96	118	5	58	5	M4	1.7	Fan
	4A0009B		108	128	154	96	118	5	58	5	M4	1.7	cooled
	4A0011B		140	128	143	128	118	5	65	5	M4	2.4	

Enclosure Panel [NEMA Type 1]

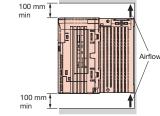
Voltage	Model							Dime	nsions	s (mm)						Weight	NEMA 1 Kit	
Class	CIMR-VA	Figure	W1	H2	W	H1	D	t1	H5	D1	н	H4	НЗ	H6	d	(kg)	Code No. (Model)	Cooling
	2A0001B		56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8		0.11
	2A0002B		56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8	100-036-378	Self
	2A0004B	1	56	118	68	128	108	5	5	38.5	148	20	5	1.5	M4	1.1	(EZZ020564A)	cooled
	2A0006B		56	118	68	128	128	5	5	58.5	148	20	5	1.5	M4	1.3	1	
	2A0008B		96	118	108	128	129	5	5	58	149	21	5	1.5	M4	1.9	100-036-380	
200 V	2A0010B		96	118	108	128	129	5	5	58	149	21	5	1.5	M4	1.9	(EZZ020564G)	
Class (Three-	2A0012B	2	96	118	108	128	137.5	5	5	58	149	21	5	1.5	M4	1.9	100-036-381 (EZZ020564C)	- Fan
Phase)	2A0018B		128	118	140	128	143	5	5	65	149	21	5	5	M4	2.6	100-036-384	Fan
	2A0020B		128	118	140	128	143	5	5	65	149	21	5	5	M4	2.6	(EZZ020564H)	cooled
	2A0030F		122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8]
	2A0040F	3	122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8	Not required	
	2A0056F		160	284	180	270	163	5	13	75	290	15	6	1.5	M5	5.5	(Standard)	
	2A0069F		192	336	220	320	187	5	22	78	350	15	7	1.5	M6	9.2		
	BA0001B		56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8	100-036-378	
	BA0002B	4	56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8	(EZZ020564A)	
	BA0003B	1 56	118	68	128	118	5	5	38.5	148	20	5	1.5	M4	1.2	100-036-379 (EZZ020564B)	Self cooled	
200 V Class	BA0006B		96	118	108	128	137.5	5	5	58	149	21	5	1.5	M4	1.9	100-036-381 (EZZ020564C)	
(Single- Phase)	BA0010B	2	96	118	108	128	154	5	5	58	149	21	5	1.5	M4	2	100-036-382 (EZZ020564D)	
	BA0012B	2	128	118	140	128	163	5	5	65	149	21	5	5	M4	2.6	100-036-385 (EZZ020564E)	Fan cooled
	BA0018B		158	118	170	128	180	5	5	65	166	38	5	5	M4	3.3	100-036-386 (EZZ020564F)	
	4A0001B		96	118	108	128	81	5	5	10	149	21	5	1.5	M4	1.2	100-036-380	
	4A0002B		96	118	108	128	99	5	5	28	149	21	5	1.5	M4	1.4	(EZZ020564G)	Self
	4A0004B		96	118	108	128	137.5	5	5	58	149	21	5	1.5	M4	1.9	100-036-381 (EZZ020564C)	cooled
400 V	4A0005B	2	96	118	108	128	154	5	5	58	149	21	5	1.5	M4	1.9	100-036-383	
400 V Class	4A0007B		96	118	108	128	154	5	5	58	149	21	5	1.5	M4	1.9	(EZZ020564J)	
(Three-	4A0009B		96	118	108	128	154	5	5	58	149	21	5	1.5	M4	1.9	(LZZUZU304J)	
Phase)	4A0011B		128	118	140	128	143	5	5	65	149	21	5	5	M4	2.6	100-036-384 (EZZ020564H)	Fan
	4A0018F		122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8		cooled
	4A0023F	3	122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8	Not required	
	4A0031F	3	160	284	180	270	143	5	13	55	290	15	6	1.5	M5	5.2	(Standard)	
	4A0038F		160	284	180	270	163	5	13	75	290	15	6	1.5	M5	5.5		


Note: For the models shown in Figures 1 and 2, the NEMA 1 kit (option) is required. The dimensions in the above table are intended for the IP20/Open Chassis enclosure with the NEMA 1 kit.

The Open Chassis type drive can be installed in a fully-enclosed panel.

The heatsink can be mounted outside the enclosure panel, thus reducing the amount of heat inside the panel and allowing for a more compact set up. Proper installation requires an understanding of the temperature at each point within the enclosure panel as shown below. Be sure to leave enough clearance during installation for ventilation and proper cooling as well as access to wiring for maintenance.

Mounting the External Heatsink


Cooling Design for Fully-Closed Enclosure Panel Fully-enclosed panel Top cover* Air temperature at top of panel -10 to te00°C

Mounting surface

Ensuring Ventilation

Side Clearance

Top/Bottom Clearance

Note: A separate mounting bracket option is required to install the heatsink outside the enclosure. Refer to the following page.

*: The Enclosure Panel type models (CIMR-VA2A0030 to 0069, CIMR-VA4A0018 to 0038) can be installed with the top and bottom covers removed.

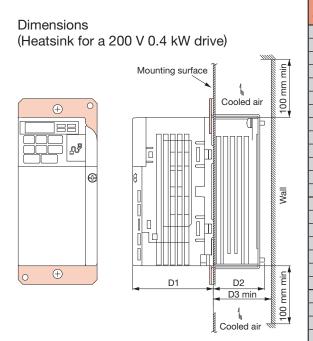
Drive Watts Loss Data

Normal Duty Ratings

Voltage	Model N	lumber														
Class		A2A		0001	0002	0004	0006	8000	0010	0012	0018	0020	0030	0040	0056	0069
200 V	Rated Outp	ut Current	Α	1.2	1.9	3.5	6	8	9.6	12	17.5	19.6	30	40	56	69
Class		Heatsink	W	5	7.6	15.8	27.5	44.6	51.7	61.3	89.8	98.7	246.4	266.7	357.9	461.7
(Three-	Heat Loss	Internal	W	8	9.5	13.6	17.2	24	25.8	30.4	44.1	46.3	88.9	112.8	151.8	184.5
Phase)		Total Heat Loss	W	13	17.1	29.4	44.7	68.6	77.5	91.7	133.9	145	335.3	379.5	509.7	646.2
Voltage	Model N	lumber		0001	0002	0003	0006	_	0010	0012	_	_	_	_	_	_
Class	CIMR-VABA			0001	0002	0003	0000		0010	0012						
200 V	Rated Output Current A		А	1.2	1.9	3.3	6	-	9.6	12	-	-	-	-	-	-
Class		Heatsink	W	5	7.6	14.6	30.1	-	51.7	61.3	-	-	-	-	-	-
(Single-	Heat Loss	Internal	W	8.5	9.7	14.4	19.4	-	29.8	37.1	-	-	-	-	-	-
Phase)		Total Heat Loss	W	13.5	17.3	29	49.5	-	81.5	98.4	-	-	-	-	-	-
Voltage	Model N	lumber		0001	0002	0004	0005	_	0007	0009	_	0011	0018	0023	0031	0038
Class	CIMR-V	A4A		0001	0002	0004	0005		0007	0009		0011	0018	0023	0031	0038
400 V	Rated Outp	ut Current	А	1.2	2.1	4.1	5.4	-	6.9	8.8	-	11.1	17.5	23	31	38
Class	Heatsink W		10	18.5	30.5	44.5	-	58.5	63.7	-	81.7	181.2	213.4	287.5	319.2	
(Three-	Heat Loss	Internal	W	9.6	13.9	16.8	21.8	-	28.5	31.4	-	46	80.1	107.7	146.1	155.8
Phase)	Total Heat Loss W		W	19.6	32.4	47.3	66.3	-	87	95.1	-	127.7	261.3	321.1	433.6	475

Note: Heat loss data based on carrier frequency of 2 kHz (default).

Heavy Duty Ratings

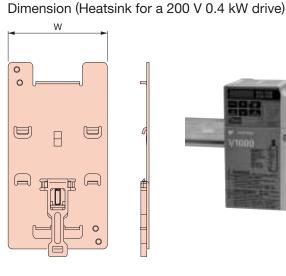

		-														
Voltage	Model N	umber		0001*1	0002*1	0004*1	0006*1	0008*1	0010*2	0012*2	0018*2	0020*2	0030*2	0040*2	0056*2	0069*2
Class	CIMR-V	42A		0001	0002	0004	0000	0000	0010	0012	0010	0020	0000	0040	0000	0003
200 V	Rated Outp	ut Current	А	0.8	1.6	3	5	6.9	8	11	14	17.5	25	33	47	60
Class		Heatsink	W	4.3	7.9	16.1	27.4	48.7	54.8	70.7	92.6	110.5	231.5	239.5	347.6	437.7
(Three-	Heat Loss	Internal	W	7.3	8.8	11.5	15.9	22.2	23.8	30	38.8	43.3	72.2	81.8	117.6	151.4
Phase)		Total Heat Loss	W	11.6	16.7	27.6	43.3	70.9	78.6	100.7	131.4	153.8	303.7	321.3	465.2	589.1
Voltage	Model N			0001*1	0002*1	0003*1	0006*1	_	0010*2	0012*2	_	0018*2	_	_		_
Class	CIMR-VABA			0001	0002	0003.	0000.		001012	001212		0010	_			_
200 V	Rated Output Current A		А	0.8	1.6	3	5	-	8	11	-	17.5	-	-	-	-
Class		Heatsink	W	4.3	7.9	16.1	33.7	-	54.8	70.7	-	110.5	-	-	-	-
(Single-	Heat Loss	Internal	W	7.4	8.9	11.5	16.8	-	25.9	34.1	-	51.4	-	-	-	-
Phase)		Total Heat Loss	W	11.7	16.8	27.6	50.5	-	80.7	104.8	-	161.9	-	-	-	-
Voltage	Model N	umber		0001*2	0002*2	0004*2	0005*2	_	0007*2	0009*2	_	0011*2	0018*2	0023*2	0031*2	0038*2
Class	CIMR-V	44A		000112	000212	0004**	00051-		000712	0009.2		0011	001012	002312	003112	00301-
400 V	Rated Outp	ut Current	А	1.2	1.8	3.4	4.8	-	5.5	7.2	-	9.2	14.8	18	24	31
Class	Heatsink W		19.2	28.9	42.3	70.7	-	81	84.6	-	107.2	166	207.1	266.9	319.1	
(Three-	Heat Loss	Internal	W	11.4	14.9	17.9	26.2	-	30.7	32.9	-	41.5	62.7	78.1	105.9	126.6
Phase)	Total Heat Loss W		W	30.6	43.8	60.2	96.9	-	111.7	117.5	-	148.7	228.7	285.2	372.8	445.7
	Total Heat Loss			•												·

*1: Heat loss data based on carrier frequency of 10 kHz (default).

26 *2: Heat loss data based on carrier frequency of 8 kHz (default).

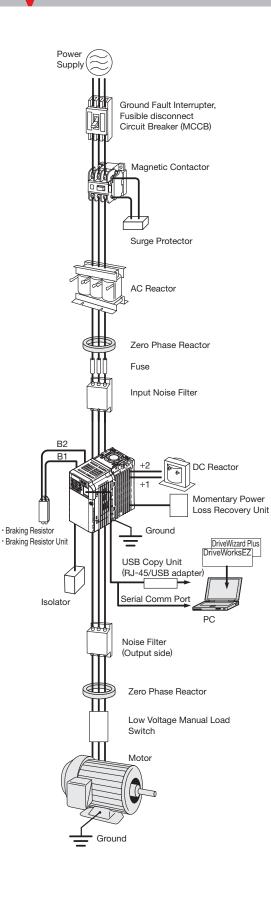
Attachment for External Heatsink

Additional attachments required for installation. Final dimensions are taller than drive height.


Model	Dime	ensions (mm)	Code No.
CIMR-VA:	D1	D2	D3	(Model)
2A0001	69.5	12	30	100-034-075 (EZZ020568A)
2A0002	03.5	12	50	100 034 073 (EZZ020300A)
2A0004	69.5	42	50	100-034-076 (EZZ020568B)
2A0006	09.5	62	70	100-034-077 (EZZ020568G)
2A0008	71			
2A0010	11	58	70	100-034-079 (EZZ020568D)
2A0012	79.5			
2A0018	78	65	70	100-034-080 (EZZ020568E)
2A0020	70	05	10	100 034 000 (LZZ020308E)
2A0030	86.6	53.4	60	100-036-300 (EZZ020568H)
2A0040	00.0	55.4	00	100-030-300 (EZ2020508H)
2A0056	89.6	73.4	80	100-036-301 (EZZ020568J)
2A0069	110.6	76.4	85	100-036-302 (EZZ020568K)
BA0001	69.5	12	30	100-034-075 (EZZ020568A)
BA0002	09.5	12	30	100-034-075 (EZZ020508A)
BA0003	69.5	42	50	100-034-076 (EZZ020568B)
BA0006	79.5	58	70	100-036-418 (EZZ020568C)
BA0010	96	58	70	100-034-079 (EZZ020568D)
BA0012	98	65	70	100-034-080 (EZZ020568E)
BA0018	115	65	70	100-036-357 (EZZ020568F)
4A0001	71	13.5	30	100-034-078 (EZZ020568L)
4A0002	71	28	40	100-036-418 (EZZ020568C)
4A0004	79.5	58	70	100-030-418 (EZ2020508C)
4A0005				
4A0007	96	58	70	100-034-079 (EZZ020568D)
4A0009				
4A0011	78	65	70	100-034-080 (EZZ020568E)
4A0018	86.6	53.4	60	100-036-300 (EZZ020568H)
4A0023	0.00	53.4	00	100-030-300 (EZZ020568H)
4A0031	89.6	53.4	60	100-036-301 (EZZ020568J)
4A0038	09.0	73.4	80	100-030-301 (EZZ0203083)

Note: The Enclosure Panel type models (CIMR-VA2A0030 to 0069, CIMR-VA4A0018 to 0038) can be installed with the top and bottom covers removed.

DIN rail attachment available for quick mounting and disassembly.


DIN Rail Attachment

The attachment is applicable to models with dimensions of 170 mm (W) and 128 mm (H) max. Not for use with finless-type models (models without a heatsink).

Model CIMR-VA	Width (mm)	Code No.
2A0001		
2A0002	68	EZZ08122A
2A0004	00	EZZUOIZZA
2A0006		
2A0008		
2A0010	108	EZZ08122B
2A0012		
2A0018	140	EZZ08122C
2A0020	140	EZZ001220
BA0001		
BA0002	68	EZZ08122A
BA0003		
BA0006	108	EZZ08122B
BA0010	100	LZZ00122D
BA0012	140	EZZ08122C
BA0018	170	EZZ08122D
4A0001		
4A0002		
4A0004	108	F7708122B
4A0005	100	
4A0007		
4A0009		
4A0011	140	EZZ08122C

Name	Purpose	Model, Manufacturer	Page
Ground Fault Interrupter (GFI)	Always install a GFI on the power-supply side to protect the power supply system and to prevent an overload at the occurrence of short- circuit, and to protect the drive from ground faults that could result in electric shock or fire. Note: When a GFI is installed for the upper power supply system, an MCCB can be used instead of a GFI. Choose a GFI designed to minimize harmonics specifically for AC drives. Use one GFI per drive, each with a current rating of at least 30 mA.	Recommended: NV series by Mitsubishi Electric	p.30
Circuit Breaker	Always install a circuit breaker on the power- supply side to protect the power supply system and to prevent an overload at the occurrence of a short-circuit.	Recommended: NF series by Mitsubishi Electric	p.30
Magnetic Contactor	Interrupts the power supply to the drive. In addition to protecting drive circuitry, a magnetic contactor also prevents damage to a braking resistor if used.	Recommended: SC series by Fuji Electric	p.31
Surge Protector	Absorbs the voltage surge from switching of electro-magnetic contactors and control relays. Install a surge protector to the magnetic contactors and control relays as well as magnetic valves and magnetic braking coil.	DCR2 series RFN series by Nippon Chemi- Con Corporation	p.31
DC Reactor	Used for harmonic current suppression and total improving power factor.	UZDA series	p.32, 33
AC Reactor	Should be used if the power supply capacity is larger than 600 kVA.	UZBA series	p.34, 35
Zero Phase Reactor	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Can be used on both the input and output sides.	F6045GB F11080GB by Hitachi Metals, Ltd.	p.36
Fuse / Fuse Holder	Protects internal circuitry in the event of component failure. Fuse should be connected to the input terminal of the drive. Note: Refer to the instruction manual for information on UL approval.	CR6L series CMS series by Fuji Electric	p.37
Capacitor-type Noise Filter	Reduces noise from the line that enters into the drive input power system. The noise filter can be used in combination with a zero-phase reactor. Note: Available for drive input only. Do not connect the noise filter to the output terminals.	3XYG 1003 by Okaya Electric Industries	p.37
Input Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive.	LNFD series LNFB series FN series For CE Marking (EMC Directive) compliant models, refer to V1000 Technical Manual.	p.38, 39
Output Noise Filter	Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive.	LF series by NEC TOKIN Corporation	p.40
Isolator	Isolates the drive I/O signal, and is effective in reducing inductive noise.	DGP2 series	p.41
Braking Resistor	Used to shorten the deceleration time by dissipat- ing regenerative energy through a resistor. (3% ED)	ERF-150WJ series CF120-B579 series	p.42, 43
Braking Resistor Unit	Used to shorten the deceleration time by dissipat- ing regenerative energy through a resistor. A thermal overload relay is built in. (10% ED)	LKEB series	p.42, 43
24 V Power Supply	Provides power supply for the control circuit and option boards. Note: Parameter settings cannot be changed when the drive is operating solely from this power supply.	PS-V10S PS-V10M	p.44
USB Copy Unit (RJ-45/ USB compatible plug)	 Adapter for connecting the drive to the USB port of a PC. Can copy parameter settings to be later transferred to another drive. 	JVOP-181	p.45

	Name	Purpose	Model, Manufacturer	Pag
Support 7	lools ard) Cable	Connects the drive to a PC for use with DriveWizard.	WV103	p.4
	Digital Operator	Allows for remote operation. Includes a Copy function for saving drive settings.	LCD: JVOP-180 LED: JVOP-182	p.46
Operator	Extension Cable	Cable for connecting the remote digital operator.	WV001: 1 m WV003: 3 m	
	MECHATROLINK-I		SI-T3/V	
	MECHATROLINK-		SI-ET3/V*1	1
	CC-Link	l E	SI-C3/V	1
Communi-	DeviceNet		SI-N3/V	1
cation	CompoNet	Allows control of the drive via a fieldbus network.	SI-M3/V	p.47
Interface	PROFIBUS-DP		SI-P3/V	
Unit	CANopen		SI-S3/V	
	EtherCAT		SI-ES3/V*2	
	EtherNet/IP		SI-EN3/V*2	
	Modbus/TCP		SI-EM3/V*2	<u> </u>
Momenta Recovery	ry Power Loss Unit	Ensures continued drive operation for a power loss of up to 2 s.	P0010 Type (200 V class) P0020 Type (400 V class)	p.48
Frequency I	Meter, Current Meter		DCF-6A	
Frequenc Potention	y setting neter (2 kΩ)		RH000739	
	Meter Adjusting eter (20 kΩ)	Allows the user to set and monitor the frequency, current, and voltage using an external device.	RH000850	p.48
	ial for Frequency otentiometer	current, and voltage using an external device.	CM-3S	
Output Vo	oltage Meter		SCF-12NH	
Potential	Transformer		UPN-B	p.49
NEMA 1 H	Kit	Turns an IP20 open-chassis design into a NEMA 1 compliant enclosure panel.	_	p.25
Attachme Heatsink	nt for External	Mechanical kit to install the drive with the heatsink out of the cabinet. Note: Current derating must be considered in some instances.	_	p.27
DIN Rail A	Attachment	Allows mounting the drive on a DIN rail. Installs to the rear of the drive unit.	_	
Low Volta Switch	ige Manual Load	Prevents shock from the voltage created on the terminals board from a coasting synchronous motor.	Recommended: AICUT, LB series by AICHI ELECTRIC WORKS CO.,Ltd.	-
k2: Availa	able soon.	-ET3/V is available in drive software versions P urer in question for availability and specification	WORKS CO.,Ltd. RG: S1023 and late	

Ground Fault Interrupter, Circuit Breaker

Base device selection on motor capacity. Make sure that the rated breaking capacity is higher than the shortcircuit current for the power supply. Protect the wiring to withstand the short-circuit current for the power supply using a combination of fuses if the rated breaking capacity of the circuit breaker or ground fault interrupter is insufficient, such as when the power transformer capacity is large.

Ground Fault Interrupter [Mitsubishi Electric]

er Circuit Breaker [Mitsubishi Electric]

Three-Phase 200 V Class

			Ground Faul	t Interrupter					Circuit I	Breaker		
Motor	With	out Reac	tor*1	Wit	th Reacto	or*2	With	out Read	tor*1	Wit	h Reacte	or*2
Capacity (kW)	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3
0.1	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.2	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.4	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.75	NV32-SV	10	10/10	NV32-SV	10	10/10	NF32-SV	10	7.5/7.5	NF32-SV	10	7.5/7.5
1.5	NV32-SV	15	10/10	NV32-SV	10	10/10	NF32-SV	15	7.5/7.5	NF32-SV	10	7.5/7.5
2.2	NV32-SV	20	10/10	NV32-SV	15	10/10	NF32-SV	20	7.5/7.5	NF32-SV	15	7.5/7.5
3.7	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5
5.5	NV63-SV	50	15/15	NV63-SV	40	15/15	NF63-SV	50	15/15	NF63-SV	40	15/15
7.5	NV125-SV	60	50/50	NV63-SV	50	15/15	NF125-SV	60	50/50	NF63-SV	50	15/15
11	NV125-SV	75	50/50	NV125-SV	75	50/50	NF125-SV	75	50/50	NF125-SV	75	50/50
15	NV250-SV	125	85/85	NV125-SV	100	50/50	NF250-SV	125	85/85	NF125-SV	100	50/50
18.5	NV250-SV	150	85/85	NV250-SV	125	85/85	NF250-SV	150	85/85	NF250-SV	125	85/85

Single-Phase 200 V Class

			Ground Faul	t Interrupter			Circuit Breaker							
Motor	With	out Read	tor*1	Wit	th Reacto	or*2	With	out Reac	tor*1	With Reactor*2				
Capacity (kW)	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3		
0.1	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5		
0.2	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5		
0.4	NV32-SV	10	10/10	NV32-SV	10	10/10	NF32-SV	10	7.5/7.5	NF32-SV	10	7.5/7.5		
0.75	NV32-SV	20	10/10	NV32-SV	15	10/10	NF32-SV	20	7.5/7.5	NF32-SV	15	7.5/7.5		
1.5	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5		
2.2	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5		
3.7	NV63-SV	50	15/15	NV63-SV	40	15/15	NF63-SV	50	15/15	NF63-SV	40	15/15		

Three-Phase 400 V Class

			Ground Faul	t Interrupter					Circuit I	Breaker		
Motor	With	out Read	tor*1	Wit	th Reacto	or*2	With	out Read	tor*1	Wit	h Reacto	or*2
Capacity (kW)	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/Ics*3
0.2	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	3	2.5/2.5	NF32-SV	3	2.5/2.5
0.4	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	3	2.5/2.5	NF32-SV	3	2.5/2.5
0.75	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	5	2.5/2.5	NF32-SV	5	2.5/2.5
1.5	NV32-SV	10	5/5	NV32-SV	10	5/5	NF32-SV	10	2.5/2.5	NF32-SV	10	2.5/2.5
2.2	NV32-SV	15	5/5	NV32-SV	10	5/5	NF32-SV	15	2.5/2.5	NF32-SV	10	2.5/2.5
3.7	NV32-SV	20	5/5	NV32-SV	15	5/5	NF32-SV	20	2.5/2.5	NF32-SV	15	2.5/2.5
5.5	NV32-SV	30	5/5	NV32-SV	20	5/5	NF32-SV	30	2.5/2.5	NF32-SV	20	2.5/2.5
7.5	NV32-SV	30	5/5	NV32-SV	30	5/5	NF32-SV	30	2.5/2.5	NF32-SV	30	2.5/2.5
11	NV63-SV	50	7.5/7.5	NV63-SV	40	7.5/7.5	NF63-SV	50	7.5/7.5	NF63-SV	40	7.5/7.5
15	NV125-SV	60	25/25	NV63-SV	50	7.5/7.5	NF125-SV	60	25/25	NF63-SV	50	7.5/7.5
18.5	NV125-SV	75	25/25	NV125-SV	60	25/25	NF125-SV	75	25/25	NF125-SV	60	25/25

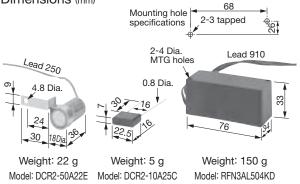
*1: The AC or DC reactor is not connected to the drive.

*2: The AC or DC reactor is connected to the drive.

*3 : Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity

Magnetic Contactor

Base device selection on motor capacity.

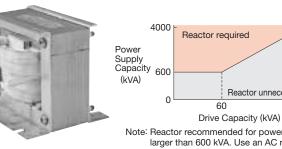

Magnetic Contactor [Fuji Electric]

	Thr	ee-Phase	200 V Cla	SS	Sin	gle-Phase	200 V Cla	ISS	Thr	ee-Phase	400 V Cla	SS
Motor	Without F	Reactor*1	With Re	actor*2	Without F	leactor*1	With Re	actor*2	Without R	leactor*1	With Re	actor*2
Capacity (kW)	Model	Rated Current (A)										
0.1	SC-03	11	SC-03	11	SC-03	11	SC-03	11	-	-	-	-
0.2	SC-03	11	SC-03	11	SC-03	11	SC-03	11	SC-03	7	SC-03	7
0.4	SC-03	11	SC-03	11	SC-03	11	SC-03	11	SC-03	7	SC-03	7
0.75	SC-05	13	SC-03	11	SC-4-0	18	SC-4-0	18	SC-03	7	SC-03	7
1.5	SC-4-0	18	SC-05	13	SC-N2	35	SC-N1	26	SC-05	9	SC-05	9
2.2	SC-N1	26	SC-4-0	18	SC-N2	35	SC-N2	35	SC-4-0	13	SC-4-0	13
3.7	SC-N2	35	SC-N1	26	SC-N2S	50	SC-N2S	50	SC-4-1	17	SC-4-1	17
5.5	SC-N2S	50	SC-N2	35	-	-	-	-	SC-N2	32	SC-N1	25
7.5	SC-N3	65	SC-N2S	50	-	-	-	-	SC-N2S	48	SC-N2	32
11	SC-N4	80	SC-N4	80	-	-	-	-	SC-N2S	48	SC-N2S	48
15	SC-N5	93	SC-N4	80	-	-	-	-	SC-N3	65	SC-N2S	48
18.5	SC-N5	93	SC-N5	93	-	-	_	_	SC-N3	65	SC-N3	65

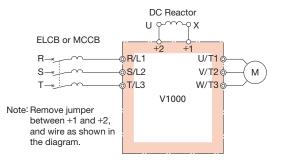
*1: The AC or DC reactor is not connected to the drive.*2: The AC or DC reactor is connected to the drive.

Surge Protector

Dimensions (mm)

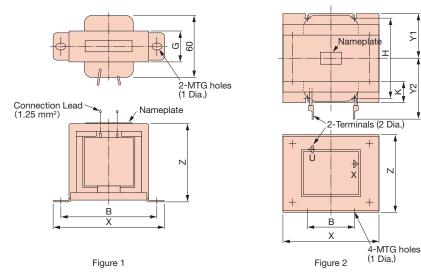

[Nippon Chemi-Con Corporation]

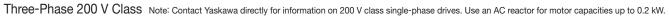
Product Line


Periph	eral Dev	Surge Protector	Model	Specifications	Code No.
200 V to 230 V		Capacity Coil han relay)	DCR2-50A22E	220 Vac 0.5 μ F+200 Ω	C002417
200 V to 240 V		MY2, MY3 [Omron Corporation] MM2, MM4 [Omron Corporation] HH22, HH23 [Fuji Electric]	DCR2-10A25C	250 Vac 0.1 μF+100 Ω	C002482
	38	30 to 480 V	RFN3AL504KD	1000 Vdc 0.5 $\mu\mathrm{F}\text{+}220~\Omega$	C002630

DC Reactor (UZDA-B for DC circuit)

Base device selection on motor capacity.


Reactor unnecessary 400 Note: Reactor recommended for power supplies larger than 600 kVA. Use an AC reactor if power supply is 0.2 kW or smaller.



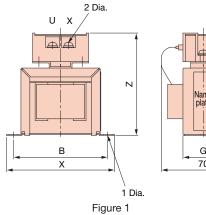
Connection Diagram

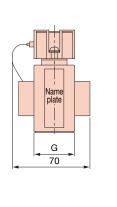
5

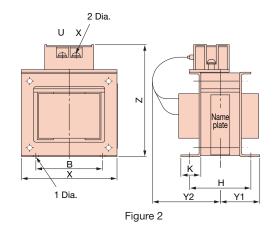
Dimensions (mm)

Motor Capacity	Current	Inductance	Code No.	Figure						nsions m)					Weight	Watt Loss	Wire Gauge*
(kW)	(A)	(mH)			Х	Y2	Y1	Ζ	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(VV)	(mm²)
0.4 0.75	5.4	8	X010048	1	85	-	_	53	74	_	_	32	M4	-	0.8	8	2
1.5 2.2 3.7	18	3	X010049		86	80	36	76	60	55	18	_	M4	M5	2	18	5.5
5.5 7.5	36	1	X010050	2	105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
11 15	72	0.5	X010051		105	105	56	93	64	100	26	_	M6	M8	4.9	29	30
18.5	90	0.4	X010176	1	133	120	52.5	117	86	80	25	_	M6	M8	6.5	45	30

Three-Phase 400 V Class


Motor Capacity	Current	Inductance	Code No.	Figure						nsions m)					Weight	Watt Loss	Wire Gauge*
(kW)	(A)	(mH)		J. T	Х	Y2	Y1	Ζ	В	Ĥ	K	G	1 Dia.	2 Dia.	(kg)	(W)	(mm ²)
0.4 0.75	3.2	28	X010052	-1	85	_	_	53	74	_	_	32	M4	_	0.8	9	2
1.5 2.2	5.7	11	X010053		90	_	_	60	80	_	_	32	M4	_	1	11	2
3.7	12	6.3	X010054		86	80	36	76	60	55	18	-	M4	M5	2	16	2
5.5 7.5	23	3.6	X010055	2	105	90	46	93	64	80	26	—	M6	M5	3.2	27	5.5
11 15	33	1.9	X010056		105	95	51	93	64	90	26	_	M6	M6	4	26	8
18.5	47	1.3	X010177	1	115	125	57.5	100	72	90	25	—	M6	M6	6	42	14


*: Cable: IV, 75°C, ambient temperature 45°C, 3 lines max.

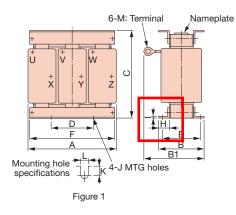

Terminal Type

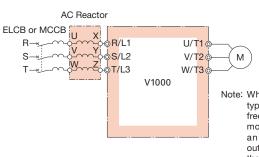
Dimensions (mm)

200 V Class

Motor Capacity	Current	Inductance	Code No.	Figure						nsions m)					Weight	Watt Loss
(kW)	(A)	(mH)			Х	Y2	Y1	Ζ	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)
0.4 0.75	5.4	8	300-027-130	1	85	_	-	81	74	Ι	-	32	M4	M4	0.8	8
1.5																
2.2	18	3	300-027-131		86	84	36	101	60	55	18	-	M4	M4	2	18
3.7																
5.5	36	1	300-027-132	2	105	94	46	129	64	80	26	_	M6	M4	3.2	22
7.5	50	1	500 027 132	2	105	34	40	123	04	00	20		1010	1014	0.2	22
11	72	0.5	300-027-133		105	124	56	135	64	100	26	_	M6	M6	4.9	29
15	12	0.5	300-027-133		105	124	50	135	04	100	20		1010	1010	4.9	29
18.5	90	0.4	300-027-139		133	147.5	52.5	160	86	80	25	-	M6	M6	6.5	44

400 V Class


Motor Capacity	Current	Inductance	Code No.	Figure						nsions m)					Weight	Watt Loss
(kW)	(A)	(mH)			Х	Y2	Y1	Ζ	В	Н	K	G	1 Dia.	2 Dia.	(kg)	(W)
0.4	3.2	28	300-027-134		85	_	_	81	74	_	_	32	N44		0.8	9
0.75	3.2	28	300-027-134	-	85		_	81	74	_	_	32	M4	M4	0.8	9
1.5	5.7	11	300-027-135		90	_	_	88	80	_	_	32	M4	M4	-1	11
2.2	5.7	11	300-027-135		90			00	80			32	1014	1014	I	11
3.7	12	6.3	300-027-136		86	84	36	101	60	55	18	-	M4	M4	2	16
5.5	23	3.6	300-027-137		105	104	46	118	64	80	26	_	M6	M4	3.2	27
7.5	23	5.0	300-027-137	2	105	104	40	110	04	80	20		1010	1014	5.2	21
11	33	1.9	300-027-138	2	105	109	51	129	64	90	26	_	M6	M4	4	26
15		1.9	300-027-130		105	109	51	129	04	30	20		1010	1014	4	20
18.5	47	1.3	300-027-140		115	142.5	57.5	136	72	90	25	—	M6	M5	6	42


AC Reactor (UZBA-B for Input 50/60 Hz)

Base device selection on motor capacity.

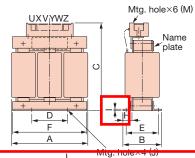
Dimensions (mm)

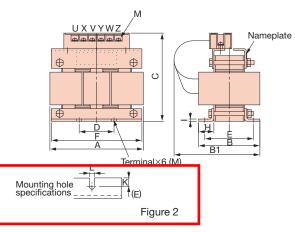
Connection Diagram

Note: When using low noise type drives (high-carrier frequency of 2.5 kHz or more), do not connect an AC reactor to the output side (U, V, W) of the drive.

Three-Phase 200 V Class	Note: For the 200 V class single-phase input series, contact us for inquiry.

Motor Capacity	Current	Inductance	Code No.	Figure						Dir	mensic (mm)	ons						Weight	Watt Loss
(kW)	(A)	(mH)			Α	В	B1	С	D	E	F	Н	I	J	К	L	М	(kg)	(W)
3.7	20	0.53	X002491			00	114			70					11.5		ME	2	35
5.5	30	0.35	X002492		130	88	119	105	50	10	130	22	3.2	M6	9	7	M5	3	45
7.5	40	0.265	X002493] _		98	139			80					11.5		M6	4	50
11	60	0.18	X002495		160	105	147.5	130	75	85	160	25		M6	10	7	M6	6	65
15	80	0.13	X002497]	180	100	155	150	75	80	180	25	2.3	M6	10	7	M8	8	75
18.5	90	0.12	X002498]	180	100	150	150	15	00	180	25		010	10	1	IVIO	0	90


Three-Phase 400 V Class


Motor Capacity	Current	Inductance	Code No.	Figure						Dir	mensic (mm)	ons						Weight	Watt Loss
(kW)	(A)	(mH)			Α	В	B1	С	D	E	F	Н	I	J	K	L	М	(kg)	(W)
7.5	20	1.06	X002502		160	90	115	130	75	70	160	25		M6	10	7	M5	5	50
11	30	0.7	X002503	4	100	105	132.5	130	75	85	100	20	2.3	IVIO	10	· '	IVIS	6	65
15	40	0.53	X002504] '	180	100	140	150	75	80	180	25	2.3	M6	10	7	M6	Q	90
18.5	50	0.42	X002505		100	100	145	150	75	00	100	25		IVIO	10	l '	IVIO	0	90

Terminal Type

Dimensions (mm)

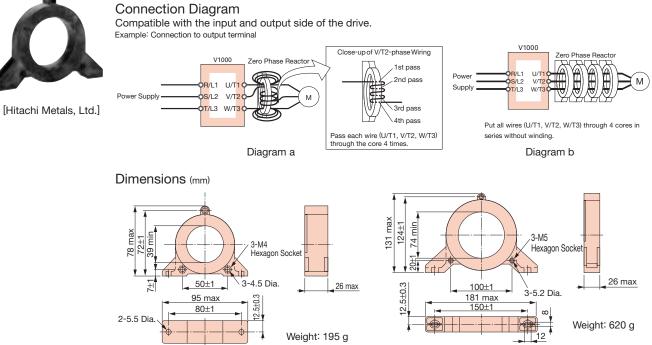
Mounting hole

Figure 1

200 V Class

Motor Capacity	Current	Inductance	Code No.	Figure						Dir	nensio (mm)	ons						Weight	Watt Loss
(kW)	(A)	(mH)			А	В	B1	С	D	Е	F	Н	I	J	K	L	М	(kg)	(VV)
0.1	2	7	V000764					115											
0.2	2	7	X002764		120	71		115	40	50	105	20	2.3		10.5			2.5	15
0.4	2.5	4.2	X002553] _	120		_	120	40	50	105	20	2.3	M6	10.5	7		2.5	15
0.75	5	2.1	X002554					120								'	M4		
1.5	10	1.1	X002489		130	88		130	50	70	130	22	3.2		9			3	25
2.2	15	0.71	X002490		130	00		130	50	70	130	22	3.2		9			3	30
3.7	20	0.53	300-027-120			88	140	130		70							M4	3	35
5.5	30	0.35	300-027-121		135	00	150	130	50	70	130	22	3.2		9		1014	3	45
7.5	40	0.265	300-027-122	2		98	160	140		80				M6		7	M5	4	50
11	60	0.18	300-027-123	2	165	105	185	170		85	160			1010		'		6	65
15	80	0.13	300-027-124]	185	100	180	195	75	80	180	25	2.3		10		M6	8	75
18.5	90	0.12	300-027-125		100	100	100	195		00	100							0	90

400 V Class


Motor Capacity	Current	Inductance	Code No.	Figure						Dir	nensio (mm)	ons						Weight	Watt Loss
(kW)	(A)	(mH)			А	В	B1	С	D	Е	F	Н	1	J	K	L	М	(kg)	(VV)
0.2	1.3	18	X002561																
0.4	1.3	18	7002501		120	71		120	40	50	105	20	2.3		10.5			2.5	15
0.75	2.5	8.4	X002562																
1.5	5	4.2	X002563	1			-							M6		7	M4		25
2.2	7.5	3.6	X002564		130	88		130	50	70	130	22	3.2		9			3	25
3.7	10	2.2	X002500]	130			130	50		130	22	3.2		9				40
5.5	15	1.42	X002501]		98				80]							4	50
7.5	20	1.06	300-027-126		165	90	160	155		70	160						M4	5	50
11	30	0.7	300-027-127		100	105	175	155	75	85	100	25	0.0	M6	10	7	1014	6	65
15	40	0.53	300-027-128	2	105	100	170	105	15	00	100	20	2.3		10	ŕ	M5	8	90
18.5	50	0.42	300-027-129	1	185	100	170	185		80	180						CIVI	ð	90

Zero Phase Reactor

Zero-phase reactor should match wire gauge.*

- *: Current values for wire gauges may vary based on electrical codes. The table below lists selections based on Japanese electrical standards and Yaskawa's ND
 - rating. Contact Yaskawa for questions regarding UL.

Finemet Zero-Phase Reactor to Reduce Radio Noise Note: Finemet is a registered trademark of Hitachi Metals, Ltd.

Model: F6045GB

Three-Phase 200 V Class

V1000		Zero Phase Reactor			
Motor Capacity (kW)	Recommended Gauge (mm²)	Model	Code No.	Qty.	Diagram
0.1	2	F6045GB	FIL001098	1	а
0.2	2	F6045GB	FIL001098	1	а
0.4	2	F6045GB	FIL001098	1	а
0.75	2	F6045GB	FIL001098	1	а
1.5	2	F6045GB	FIL001098	1	а
2.2	2	F6045GB	FIL001098	1	а
3.7	3.5	F6045GB	FIL001098	1	а
5.5	5.5	F6045GB	FIL001098	1	а
7.5	8	F11080GB	FIL001097	1	а
11	14	F6045GB	FIL001098	4	b
15	22	F6045GB	FIL001098	4	b
18.5	30	F6045GB	FIL001098	4	b

Three-Phase 400 V Class

V1000		Zero Phase Reactor			
Motor Capacity (kW)	Recommended Gauge (mm²)	Model	Code No.	Qty.	Diagram
0.2	2	F6045GB	FIL001098	1	а
0.4	2	F6045GB	FIL001098	1	а
0.75	2	F6045GB	FIL001098	1	а
1.5	2	F6045GB	FIL001098	1	а
2.2	2	F6045GB	FIL001098	1	а
3.0	2	F6045GB	FIL001098	1	а
3.7	2	F6045GB	FIL001098	1	а
5.5	2	F6045GB	FIL001098	1	а
7.5	5.5	F6045GB	FIL001098	1	а
11	5.5	F6045GB	FIL001098	1	а
15	14	F6045GB	FIL001098	4	b
18.5	14	F6045GB	FIL001098	4	b

Single-Phase 200 V Class

V1000		Zero Phase Reactor			
Motor Capacity (kW)	Recommended Gauge (mm ²)	Model	Code No.	Qty.	Diagram
0.1	2	F6045GB	FIL001098	1	а
0.2	2	F6045GB	FIL001098	1	а
0.4	2	F6045GB	FIL001098	1	а
0.75	2	F6045GB	FIL001098	1	а
1.5	2	F6045GB	FIL001098	1	а
2.2	3.5	F6045GB	FIL001098	1	а
3.7	8	F11080GB	FIL001097	1	а

Fuse/Fuse Holder

Install a fuse to the drive input terminals to prevent damage in case a fault occurs.

Refer to the instruction manual for information on UL-approved components.

[Fuji Electric]

Three-Phase 200 V Class

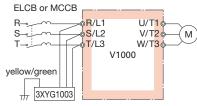
Model		AC I	AC Power Supply / DC Power Supply					
CIMR-VA2A		Fu	IUSE Fuse Holder Rated Short-Circuit Breaking Current (kA) Qty.* Model Code No. Qty.* Fi 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					
	Model	Code No.		Qty.*	Model	Code No.	Qty.*	Figure
0001	CR6L-20/UL	FU002087		3				
0002	CR6L-20/UL	FU002087		3				
0004	CR6L-20/UL	FU002087		3				
0006	CR6L-30/UL	FU002088		3	CMS-4	FU002091	3	1
0008	CR6L-50/UL	FU000935		3				
0010	CR6L-50/UL	FU000935		3				
0012	CR6L-50/UL	FU000935	100	3				
0018	CR6L-75/UL	FU002089		3				
0020	CR6L-75/UL	FU002089		3				
0030	CR6L-100/UL	FU000927		3	CMS-5	FU002092	3	2
0040	CR6L-150/UL	FU000928]	3				
0056	CR6L-150/UL	FU000928		3				
0069	CR6L-200/UL	FU000929		3		Note		

* : Multiple fuses are needed when using an AC power supply. DC power requires only two fuses. Note: Manufacturer does not recommend a specific fuse holder for this fuse. Contact the manufacturer for information on fuse dimensions.

Single-Phase 200 V Class

Model		AC I	C Power Supply / DC Power Supply								
CIMR-VABA		Fu	se	Fuse Holder							
			Rated Short-Circuit	Qty.	Model	Code	0	Figure			
			Breaking Current (kA)		woder	No.	Qty.	Figure			
0001	CR6L-20/UL	FU002087		2							
0002	CR6L-30/UL	FU002088		2	CMS-4	FU002091	2	1			
0003	CR6L-50/UL	FU000935		2							
0006	CR6L-75/UL	FU002089	100	2							
0010	CR6L-100/UL	FU000927		2	CMS-5	FU002092	2	-			
0012	CR6L-100/UL	FU000927		2	CIVIS-5	FU002092	2	1			
0018	CR6L-150/UL	FU000928		2							

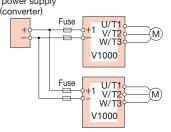
Capacitor-type Noise Filter


Capacitor-type noise filter exclusively designed for drive input. The noise filter can be used in combination with a zero-phase reactor. For both 200 V and 400 V classes. Note: The capacitor-type noise filter can be used for drive input only. Do not connect the noise filter to the output terminals.

[Okaya Electric Industries]

Model	Code No.
3XYG 1003	C002889

Connection	Diagram
------------	---------


Specifications

Rated Voltage	Capacitance (3 devices each)	Operating Temperature Range (°C)
440 V	X (Δ connection): 0.1 μ F±20% Y (λ connection): 0.003 μ F±20%	- 40 to +85

Note: For use with 460 V and 480 V units, contact Yaskawa directly.

Connection Diagram

DC Input Power Supply (example shows two V1000 drives connected in parallel.) For use with an AC power supply see the connection diagram on page 22. DC power supply

Note: When connecting multiple drives together, make sure that each drive has its own fuse. If any one fuse blows, all fuses should be replaced.

Three-Phase 400 V Class

Model		AC F	Power Supply /	DC F	Power Su	upply		
CIMR-VA4A		Fu	se		Fuse Hol	der		
	Model Code No R		Rated Short-Circuit Breaking Current (kA)	Qty.*	Model	Code No.	Qty.*	Figure
0001	CR6L-20/UL	FU002087		3				
0002	CR6L-20/UL	FU002087		3				
0004	CR6L-50/UL	FU000935	1 1	3	CMS-4	FU002091		
0005	CR6L-50/UL	FU000935		3			3	4
0007	CR6L-50/UL	FU000935		3			5	1
0009	CR6L-50/UL	FU000935	100	3				
0011	CR6L-50/UL	FU000935		3				
0018	CR6L-50/UL	FU000935		3				
0023	CR6L-75/UL	FU002089		3				
0031	CR6L-100/UL	FU000927		3	CMS-5	FU002092	3	2
0038	CR6L-150/UL	FU000928		3				

* : Multiple fuses are needed when using an AC power supply. DC power requires only two fuses.

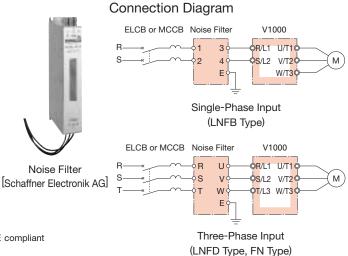
*: Mounting components supplied separately. Tighten bolt when fuse is installed

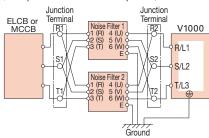
Dimensions (mm)

4.3 Dia. 26.0±1.0 ເ. ເດ 0 48.0--10.0±1.0 0±2 Soldering UL-1015AWG 18 twisted cable (3 Dia.) black and yellow/green 8 35.0±1 S ₽<u>₹</u>

Input Noise Filter

Base device selection on motor capacity.


Noise Filter without Case


Noise Filter

with Case

Note: Contact Yaskawa for CE compliant models (EMC directive).

Note: When wiring contactors in parallel, make sure wiring lengths are the same to keep current flow even to the relay terminals.

Noise filters and grounding wire should be as heavy and as short as possible.

Note: Do not connect the input noise filter to the drive output terminals (U, V, W). Connect in parallel when using two filters. Only a single noise filter is required if the filter is made by Schaffner Electronik AG.

Three-Phase 200 V Class

Motor	Noise	Filter without	Case		Nois	se Filter with Ca	ase		Noise Filter b	y Schaffner Ele	ctronik	AG
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.1	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	-	-	-	-
0.2	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	-	—	-	-
0.4	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	-	-	-	-
0.75	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	-	-	-	-
1.5	LNFD-2103DY	FIL000132	1	10	LNFD-2103HY	FIL000140	1	10	-	_	-	-
2.2	LNFD-2153DY	FIL000133	1	15	LNFD-2153HY	FIL000141	1	15	-	-	-	-
3.7	LNFD-2303DY	FIL000135	1	30	LNFD-2303HY	FIL000143	1	30	-	-	-	-
5.5	LNFD-2203DY	FIL000134	2	40	LNFD-2203HY	FIL000142	2	40	FN258L-42-07	FIL001065	1	42
7.5	LNFD-2303DY	FIL000135	2	60	LNFD-2303HY	FIL000143	2	60	FN258L-55-07	FIL001066	1	55
11	LNFD-2303DY	FIL000135	3	90	LNFD-2303HY	FIL000143	3	90	FN258L-75-34	FIL001067	1	75
15	LNFD-2303DY	FIL000135	3	90	LNFD-2303HY	FIL000143	3	90	FN258L-100-35	FIL001068	1	100
18.5	LNFD-2303DY	FIL000135	4	120	LNFD-2303HY	FIL000143	4	120	FN258L-100-35	FIL001068	1	100

Single-Phase 200 V Class

Motor	Noise	Filter without	Case		Nois	se Filter with Ca	ase	
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.1	LNFB-2102DY	FIL000128	1	10	LNFB-2102HY	FIL000136	1	10
0.2	LNFB-2102DY	FIL000128	1	10	LNFB-2102HY	FIL000136	1	10
0.4	LNFB-2152DY	FIL000129	1	15	LNFB-2152HY	FIL000137	1	15
0.75	LNFB-2202DY	FIL000130	1	20	LNFB-2202HY	FIL000138	1	20
1.5	LNFB-2302DY	FIL000131	1	30	LNFB-2302HY	FIL000139	1	30
2.2	LNFB-2202DY	FIL000130	2	40	LNFB-2202HY	FIL000138	2	40
3.7	LNFB-2302DY	FIL000131	2	60	LNFB-2302HY	FIL000139	2	60

Three-Phase 400 V Class

Motor	Noise	Filter without	Case		Nois	se Filter with Ca	ase		Noise Filter b	y Schaffner Ele	ctronił	(AG
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.2	LNFD-4053DY	FIL000144	1	5	LNFD-4053HY	FIL000149	1	5	-	-	-	-
0.4	LNFD-4053DY	FIL000144	1	5	LNFD-4053HY	FIL000149	1	5	_	—	-	-
0.75	LNFD-4053DY	FIL000144	1	5	LNFD-4053HY	FIL000149	1	5	-	-	-	-
1.5	LNFD-4103DY	FIL000145	1	10	LNFD-4103HY	FIL000150	1	10	-	_	-	-
2.2	LNFD-4103DY	FIL000145	1	10	LNFD-4103HY	FIL000150	1	10	_	—	-	-
3.7	LNFD-4153DY	FIL000146	1	15	LNFD-4153HY	FIL000151	1	15	-	-	-	-
5.5	LNFD-4203DY	FIL000147	1	20	LNFD-4203HY	FIL000152	1	20	-	-	-	-
7.5	LNFD-4303DY	FIL000148	1	30	LNFD-4303HY	FIL000153	1	30	-	-	-	-
11	LNFD-4203DY	FIL000147	2	40	LNFD-4203HY	FIL000152	2	40	FN258L-42-07	FIL001065	1	42
15	LNFD-4303DY	FIL000148	2	60	LNFD-4303HY	FIL000153	2	60	FN258L-55-07	FIL001066	1	55
18.5	LNFD-4303DY	FIL000148	2	60	LNFD-4303HY	FIL000153	2	60	FN258L-55-07	FIL001066	1	55

Dimensions (mm) Without Case

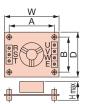


Figure 2 (Three-Phase)

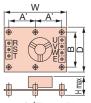
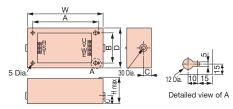
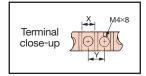
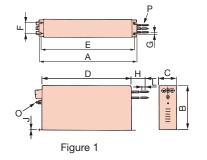



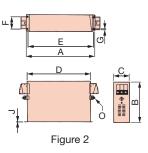
Figure 3 (Three-Phase)


Terminal close-up	
----------------------	--

Model	Code No.	Figure		Din	nensi	ons (m	וm)		Tern	ninal	Mounting	Weight
woder	Code No.	Figure	W	D	Н	Α	A'	В	Х	Y	Screw	(kg)
LNFD-2103DY	FIL000132	2	120	80	55	108	-	68			M4×4,20mm	0.2
LNFD-2153DY	FIL000133	2	120	80	55	108	-	68	9	11	M4×4,20mm	0.2
LNFD-2203DY	FIL000134	2	170	90	70	158	-	78			M4×4,20mm	0.4
LNFD-2303DY	FIL000135	3	170	110	70	-	79	98	10	13	M4×6,20mm	0.5
LNFB-2102DY	FIL000128	1	120	80	50	108	-	68			M4×4,20mm	0.1
LNFB-2152DY	FIL000129	1	120	80	50	108	-	68	9	11	M4×4,20mm	0.2
LNFB-2202DY	FIL000130	1	120	80	50	108	-	68			M4×4,20mm	0.2
LNFB-2302DY	FIL000131	1	130	90	65	118	-	78	10	13	M4×4,20mm	0.3
LNFD-4053DY	FIL000144	3	170	130	75	-	79	118			M4×6,30mm	0.3
LNFD-4103DY	FIL000145	3	170	130	95	-	79	118	9	11	M4×6,30mm	0.4
LNFD-4153DY	FIL000146	3	170	130	95	-	79	118	9		M4×6,30mm	0.4
LNFD-4203DY	FIL000147	3	200	145	100	-	94	133			M4×4,30mm	0.5
LNFD-4303DY	FIL000148	3	200	145	100	-	94	133	10	13	M4×4,30mm	0.6

With Case

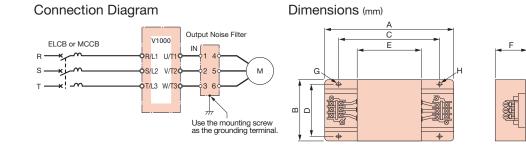

Note: The figure shows an example of three-phase input.



Model	Code No.	W	D	Н	А	В	С	Х	Y	Screw	(kg)
LNFD-2103HY	FIL000140	185	95	85	155	65	33			M4×4,10mm	0.9
LNFD-2153HY	FIL000141	185	95	85	155	65	33	9	11	M4×4,10mm	0.9
LNFD-2203HY	FIL000142	240	125	100	210	95	33			M4×4,10mm	1.5
LNFD-2303HY	FIL000143	240	125	100	210	95	33	10	13	M4×4,10mm	1.6
LNFB-2102HY	FIL000136	185	95	85	155	65	33			M4×4,10mm	0.8
LNFB-2152HY	FIL000137	185	95	85	155	65	33	9	11	M4×4,10mm	0.8
LNFB-2202HY	FIL000138	185	95	85	155	65	33			M4×4,10mm	0.9
LNFB-2302HY	FIL000139	200	105	95	170	75	33	10	13	M4×4,10mm	1.1
LNFD-4053HY	FIL000149	235	140	120	205	110	43			M4×4,10mm	1.6
LNFD-4103HY	FIL000150	235	140	120	205	110	43	9	11	M4×4,10mm	1.7
LNFD-4153HY	FIL000151	235	140	120	205	110	43	9	11	M4×4,10mm	1.7
LNFD-4203HY	FIL000152	270	155	125	240	125	43			M4×4,10mm	2.2
LNFD-4303HY	FIL000153	270	155	125	240	125	43	10	13	M4×4,10mm	2.2

Dimensions (mm)

Manufactured by Schaffner Electronik AG


Model	Figure				D	imensior	ns (mm)						Wire Gauge	Weight
Iviodei	Figure	A	В	С	D	E	F	G	Н	J	L	0	Р	(kg)
FN258L-42-07	1	329	185±1	70	300	314	45	6.5	500	1.5	12	M6	AWG8	2.8
FN258L-55-07	1	329	185±1	80	300	314	55	6.5	500	1.5	12	M6	AWG6	3.1
FN258L-75-34	2	329	220	80	300	314	55	6.5	-	1.5	-	M6	-	4.0
FN258L-100-35	2	379±1.5	220	90±0.8	350±1.2	364	65	6.5	-	1.5	-	M10	-	5.5

Note: For CE Marking (EMC Directive) compliant models, contact us for inquiry.

Terminal Mounting Weight

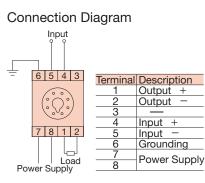
Output Noise Filter

Base device selection on motor capacity.

[NEC TOKIN Corporation]

Three/Single-Phase 200 V Class

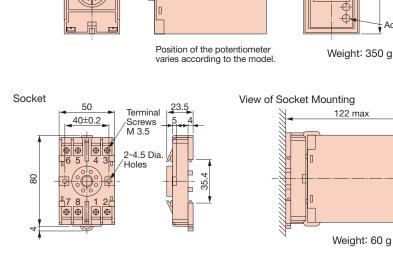
Motor Capacity	Model	Code No.	Qty.	Rated Current					nsions 1m)				Terminal	Weight
(kW)				(A)	А	В	С	D	E	F	G	Н		(kg)
0.1	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×¢4.5	<i>\$</i> 4.5	TE-K5.5M4	0.5
0.2	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×¢4.5	<i>\$</i> 4.5	TE-K5.5M4	0.5
0.4	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×¢4.5	$\phi 4.5$	TE-K5.5M4	0.5
0.75	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×¢4.5	<i>\$</i> 4.5	TE-K5.5M4	0.5
1.5	LF-310KA	FIL000068	1	10	140	100	100	90	70	45	7×¢4.5	<i>\$</i> 4.5	TE-K5.5M4	0.5
2.2	LF-320KA	FIL000069	1	20	140	100	100	90	70	45	7×¢4.5	<i>ф</i> 4.5	TE-K5.5M4	0.6
3.7	LF-320KA	FIL000069	1	20	140	100	100	90	70	45	7×¢4.5	<i>\$</i> 4.5	TE-K5.5M4	0.6
5.5	LF-350KA	FIL000070	1	50	260	180	180	160	120	65	7×¢4.5	<i>ф</i> 4.5	TE-K22M6	2
7.5	LF-350KA	FIL000070	1	50	260	180	180	160	120	65	7×¢4.5	<i>\$</i> 4.5	TE-K22M6	2
11	LF-350KA	FIL000070	2	100	260	180	180	160	120	65	7×¢4.5	<i>ф</i> 4.5	TE-K22M6	2
15	LF-350KA	FIL000070	2	100	260	180	180	160	120	65	7×¢4.5	<i>\$</i> 4.5	TE-K22M6	2
18.5	LF-350KA	FIL000070	2	100	260	180	180	160	120	65	7×¢4.5	<i>\$</i> 4.5	TE-K22M6	2


Three-Phase 400 V Class

Motor Capacity	Model	Code No.	Qty.	Rated Current					nsions nm)				Terminal	Weight
(kW)				(A)	А	В	С	D	E	F	G	Н		(kg)
0.2	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×ø4.5	<i>ø</i> 4.5	TE-K5.5M4	0.5
0.4	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	<i>ф</i> 4.5	TE-K5.5M4	0.5
0.75	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	<i>\$</i> 4.5	TE-K5.5M4	0.5
1.5	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	<i>ф</i> 4.5	TE-K5.5M4	0.5
2.2	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	<i>\$</i> 4.5	TE-K5.5M4	0.5
3.7	LF-310KB	FIL000071	1	10	140	100	100	90	70	45	7×¢4.5	<i>ф</i> 4.5	TE-K5.5M4	0.5
5.5	LF-320KB	FIL000072	1	20	140	100	100	90	70	45	7×¢4.5	<i>\$</i> 4.5	TE-K5.5M4	0.6
7.5	LF-320KB	FIL000072	1	20	140	100	100	90	70	45	7×ø4.5	<i>ø</i> 4.5	TE-K5.5M4	0.6
11	LF-335KB	FIL000073	1	35	140	100	100	90	70	45	7×¢4.5	<i>\$</i> 4.5	TE-K5.5M4	0.8
15	LF-335KB	FIL000073	1	35	140	100	100	90	70	45	7×¢4.5	<i>\$</i> 4.5	TE-K5.5M4	0.8
18.5	LF-345KB	FIL000074	1	45	260	180	180	160	120	65	7×¢4.5	<i>ф</i> 4.5	TE-K22M6	2

Isolator (Insulation Type DC Transmission Converter)

Dimensions (mm) Model GP Series


50

Adjuster

Cable Length

· 4 to 20 mA: within 100 m

• 0 to 10 V: within 50 m

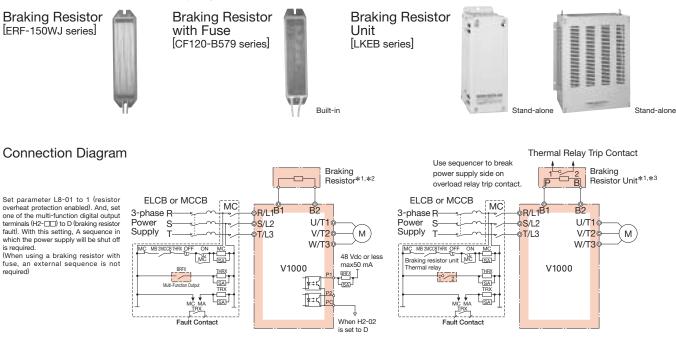
110

100

10

Performance

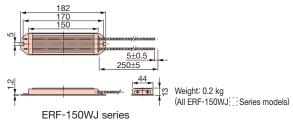
- (1) Allowance
- (2) Temperature Fluctuation
- (4) Load Resistance Fluctuation
- (5) Output Ripple
- (6) Response Time
- (7) Withstand Voltage
- (8) Insulation Resistance
- **Product Line**


Model	Input Signal	Output Signal	Power Supply	Code No.
DGP2-4-4	0 to 10 V	0 to 10 V	100 Vac	CON 000019.25
DGP2-4-8	0 to 10 V	4 to 20 mA	100 Vac	CON 000019.26
DGP2-8-4	4 to 20 mA	0 to 10 V	100 Vac	CON 000019.35
DGP2-3-4	0 to 5 V	0 to 10 V	100 Vac	CON 000019.15
DGP3-4-4	0 to 10 V	0 to 10 V	200 Vac	CON 000020.25
DGP3-4-8	0 to 10 V	4 to 20 mA	200 Vac	CON 000020.26
DGP3-8-4	4 to 20 mA	0 to 10 V	200 Vac	CON 000020.35
DGP3-3-4	0 to 5 V	0 to 10 V	200 Vac	CON 000020.15

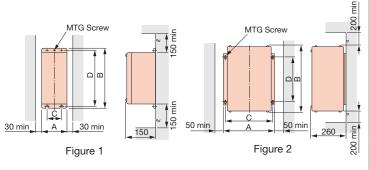
- ±0.25% of output span (ambient temp.: 23°C)
- $\pm 0.25\%$ of output span (at $\pm 10^{\circ}$ C of ambient temperature)
- (3) Aux. Power Supply Fluctuation $\pm 0.1\%$ of output span (at $\pm 10\%$ of aux. power supply)
 - $\pm 0.05\%$ of output span (in the range of load resistance)
 - ±0.5% P-P of output span
 - 0.5 s or less (time to settle to $\pm 1\%$ of final steady value)
 - 2000 Vac for 60 s (between all terminals and enclosure)
 - 20 M Ω and above (using 500 Vdc megger between each terminal and enclosure)

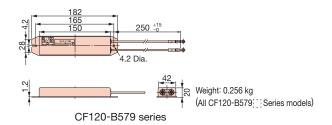
Braking Resistor, Braking Resistor Unit

Base device selection on motor capacity.



Connection Diagram A


- *1: Disable Stall Prevention during deceleration by setting L3-04 (Stall Prevention Selection during Deceleration) to 0 (disabled) or 3 (stall prevention with braking resistor) when using a Braking Resistor or Braking Resistor Unit. The motor may not stop within the deceleration time if this setting is not changed.
 *2: Set L8-01 to 1 to enable braking resistor overload protection in the drive
- *2: Set L8-01 to 1 to enable braking resistor overload protection in the drive when using ERF-type resistors.
- *3: Be sure to protect non-Yaskawa braking resistors by thermal overload relay.


Dimensions (mm)

Braking Resistor

Braking Resistor Unit

Connection Diagram B

Note: 1. For connections of the separate type braking unit (CDBR type) without

2. Multiple braking resistors should be connected in parallel.

used in this case

using the built-in braking transistor, connect the B1 terminal of the drive to

the + terminal of the braking resistor unit and connect the - terminal of the

drive to the - terminal of the braking resistor unit. The B2 terminal is not

Bra	king Resistor			Dim	ensio	ns (m	m)	Weight	Allowable Average
	Jnit Model EB-::::::::::::::::::::::::::::::::::::	Figure	А	в	с	D	MTG Screw	(kg)	Power Consumption (W)
	20P7	1	105	275	50	260	M5×3	3	30
	21P5	1	130	350	75	335	$M5 \times 4$	4.5	60
lss	22P2	1	130	350	75	335	$M5 \times 4$	4.5	89
Class	23P7	1	130	350	75	335	M5×4	5	150
>	25P5	1	250	350	200	335	M6×4	7.5	220
200	27P5	1	250	350	200	335	M6×4	8.5	300
	2011	2	266	543	246	340	M8×4	10	440
	2015	2	356	543	336	340	$M8 \times 4$	15	600
	40P7	1	105	275	50	260	M5×3	3	30
	41P5	1	130	350	75	335	M5×4	4.5	60
l o	42P2	1	130	350	75	335	M5×4	4.5	89
las	43P7	1	130	350	75	335	M5×4	5	150
	45P5	1	250	350	200	335	M6×4	7.5	220
400 V Class	47P5	1	250	350	200	335	M6×4	8.5	300
4	4011	2	350	412	330	325	M6×4	16	440
	4015	2	350	412	330	325	M6×4	18	600
	4018	2	446	543	426	340	M8×4	19	740

Standard Specifications and Applications

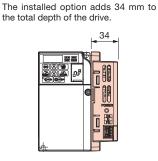
Three/Single-Phase 200 V Class

Maria		V10	000		Braking	g Re	esistor (Duty Fa	ctor: 3% E	ED, 10 s r	nax.)*1			Braking Res				Mar #2
Max. Motor	ND/	Three Dhose	Cincle Dhese		No F	use	;			With	Fus	Э		(Duty F	actor: 10%	ED,	10 s m	ax.)*1	Min*2
Capacity (kW)	HD/	CIMR-VA2A	Single-Phase CIMR-VABA	Model ERF-150WJ	Resistance (Ω)	Qty.	Diagram	Braking Torque ^{*3} (%)	Model CF120-B579	Resistance (Ω)	Qty.	Diagram	Braking Torque ^{*3} (%)	Model LKEB-	Resistor Specifications (per unit)	Qty.	Diagram	Braking Torque ^{*3} (%)	Connectable Resistor (Ω)
0.1	HD	0001	0001	401	400	1	Α	220	А	400	1	А	220	40P7	70W 750Ω	1	В	220	300
0.2	ND HD	0001 0002	0001 0002	401	400	1	А	220	А	400	1	А	220	40P7	70W 750Ω	1	В	125	300
0.4	ND	0002	0002	401	400	1	A	110	А	400	1	А	110	40P7	70W 750Ω	1	в	65	300
0.4	HD	0004	0003	201	200	<u>'</u>		220	В	200	'	^	220	20P7	70W 200Ω	<u>'</u>		220	200
0.75	ND HD	0004 0006	0003	201	200	1	А	125	В	200	1	А	125	20P7	70W 200Ω	1	В	125	200 120
1.1	ND	0006	0006	201	200	1	Α	85	В	200	1	А	85	20P7	70W 200Ω	1	в	85	120
1.1	HD	0008	-	101	100			150	С	100	Ľ		150	21P5	260W 100Ω	Ľ		150	60
1.5	ND HD	0008 0010	- 0010	101	100	1	A	125	С	100	1	А	125	21P5	260W 100Ω	1	В	125	60
2.2	ND HD	0010 0012	0010	700	70	1	A	120	D	70	1	A	120	22P2	260W 70Ω	1	в	120	60
3.0	ND	0012	0012	620	62	1	А	100	Е	62	1	А	100	22P2	260W 70Ω	1	в	90	60
5.0	HD	0018	-	020	02	<u>'</u>	~	100		02	'	A	100	23P7	390W 40Ω	<u> </u>	В	150	32
3.7	ND HD	0018 0020	- 0018	620	62	1	A	80	Е	62	1	А	80	23P7	390W 40Ω	1	В	125	32
	ND	0020	-	-	-	-	-	-	-	-	-	-	-	23P7	390W 40Ω		_	85	32
5.5	HD	0030	-	-	-	-	_	-	-	-	-	_	-	25P5	520W 30Ω	1	В	115	9.6
7.5	ND	0030	-	-	-	-	-	-	-	-	-	-	-	27P5	780W 20Ω	1	в	125	9.6
7.5	HD	0040	-	-	-	-	—	-	-	-	-	-	-	2153	70000 2032		В	125	9.0
11	ND HD	0040	-	-	_	-	-	-	-	-	-	-	-	2011	2400W 13.6Ω	1	в	125	9.6
	HD ND	0056 0056		_	_	-	_	_	_	_	-	_	_						
15	HD	0056			_	-	_	_		_	-		-	2015	3000W 10Ω	1	В	125	9.6
18.5	ND	0069	-	-	-	-	-	-	-	-	-	-	-	2015	3000W 10Ω	1	В	100	9.6

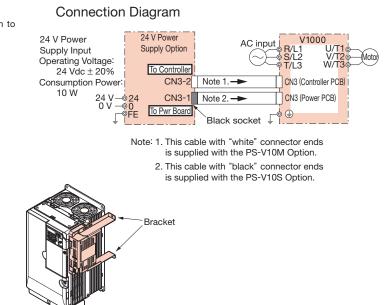
Three-Phase 400 V Class

Maria		V1000													M. + 40			
Max. Motor	ND/	Three-Phase		No F	use	9			With	Fuse	Э		(Duty F	actor: 10%	ED,	10 s m	ax.)*1	Min*2 Connectable
Capacity (kW)	HD	CIMR-VA4A	Model ERF-150WJ	Resistance (Ω)	Qty.	Diagram	Braking Torque*3 (%)	Model CF120-B579	Resistance (Ω)	Qty.	Diagram	Braking Torque* ³ (%)	Model LKEB-	Resistor Specifications (per unit)	Qty.	Diagram	Braking Torque*3 (%)	Resistor (Ω)
0.2	HD	0001	751	750	1	Α	230	F	750	1	А	230	40P7	70W 750 Ω	1	В	230	750
0.4	ND HD	0001	751	750	1	А	230	F	750	1	А	230	40P7	70W 750Ω	1	В	230	750
0.75	ND HD	0002 0004	751	750	1	А	130	F	750	1	А	130	40P7	70W 750Ω	1	в	130	750 510
1.5	ND HD	0004 0005	751 401	750 400	1	А	70 125	F G	750 400	1	А	70 125	40P7 41P5	70W 750Ω 260W 400Ω	1	В	70 125	510 240
2.2	ND HD	0005	301	300	1	А	115	н	300	1	А	115	42P2	260W 250Ω	1	в	135	240 200
3.0	ND HD	0007	401	400	2	А	125	J	250	1	А	100	42P2 43P7	260W 250Ω 390W 150Ω	1	в	100 150	200 100
3.7	ND HD	0009 0011	401	400	2	А	105	J	250	1	А	83	43P7	390W 150Ω	1	В	135	100
5.5	ND HD	0011 0018	201	200	2	A _	135 —	J —	250 —	2	A _	105 —	45P5	520W 100Ω	1	В	135	100 32
7.5	ND HD	0018	-	-	-	-	-	-	-	-	-	-	47P5	780W 75Ω	1	в	130	32
11	ND HD	0023	-	-	-	-	-	-	-	-	-	-	4011	1040W 50Ω	1	в	135	32 20
15	ND HD	0031	-	-	-	-	-	-	-	-	-	-	4015	1560W 40Ω	1	в	125	20
18.5	ND	0038	-	-	-	-	-	-	-	—	—	-	4018	4800W 32Ω	1	В	125	20

*1: Refers to a motor coasting to stop with a constant torque load. Constant output and regenerative braking will reduce the duty factor.
*2: The braking unit should have a resistance higher than the minimum connectable resistance value and be able to generate enough braking torque to stop the motor.
*3: Applications with a relatively large amount of regenerative power (elevators, hoists, etc.) may require more braking power than is possible with only the standard braking unit and braking resistor. If the braking torque exceeds the value shown in the table, a braking resistor of a higher capacity must be selected. Note: If the built-in fuse on a braking resistor blows, then the entire braking resistor should be replaced.

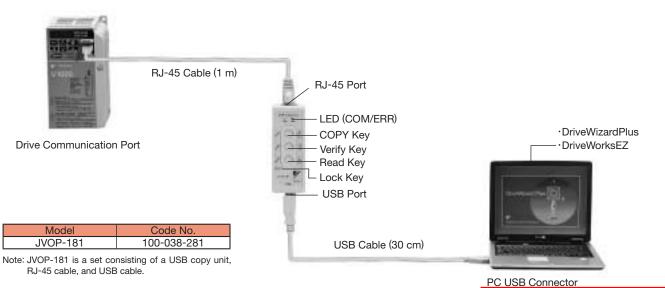

2

24 V Power Supply


The 24 V Power Supply Option maintains drive control circuit power in the event of a main power outage. The control circuit keeps the network communications and I/O data operational in the event of a power outage. It supplies external power to the control circuit only. Note: Parameter settings can be accessed but cannot be changed

when the drive is operating solely from this power supply.

The mounting support bracket is required for NEMA Type 1. If these supports are not used, the design is considered "Open Type."


Drive with PS-V10M

Voltaga Class	Voltage Class Model		ver Supply	Bracket				
voltage Class	CIMR-VA	Model	Code No.	Model	Code No.			
	2A0001B							
	2A0002B	PS-V10S	100-038-701	EZZ020639A	100-039-821			
	2A0004B							
	2A0006B							
	2A0008B							
200 V Class	2A0010B	PS-V10S	100-038-701	EZZ020639B	100-039-822			
(Three-Phase)	2A0012B	F 5-V103	100-030-701	EZZ020039B	100-039-022			
(Three-Phase)	2A0018B							
	2A0020B							
	2A0030F	PS-V10M	100-038-702	EZZ020639B	100-039-822			
	2A0040F	F3-VIUIVI	100-036-702	EZZ020039B	100-039-022			
	2A0056F	PS-V10M	100-038-702	EZZ020639C	100-039-823			
	2A0069F	F3-V10IVI	100-030-702	EZZ020039C	100-039-023			
	BA0001B							
	BA0002B	PS-V10S	100-038-701	EZZ020639A	100-039-821			
200 V Class	BA0003B							
(Single-Phase)	BA0006B							
(Olligie-i flase)	BA0010B	PS-V10S	100-038-701	EZZ020639B	100-039-822			
	BA0012B	13 1103		LZZ020033B	100 009 022			
	BA0018B							
	4A0001B	PS-V10S	100-038-701	EZZ020639A	100-039-821			
	4A0002B	F3-V103	100-030-701	EZZ020039A	100-039-021			
	4A0004B							
	4A0005B							
400 V Class	4A0007B	PS-V10S	100-038-701	EZZ020639B	100-039-822			
(Three-Phase)	4A0009B							
(THEE-FHASE)	4A0011B							
	4A0018F							
	4A0023F	PS-V10M	100-038-702	EZZ020639B	100-039-822			
	4A0031F							
	4A0038F	PS-V10M	100-038-702	EZZ020639C	100-039-823			

USB Copy Unit (Model: JVOP-181)

Copy parameter settings in a single step, then transfer those settings to another drive. Connects to the RJ-45 port on the drive and to the USB port of a PC.

Connection

Specifications

Item	Specifications
Port	LAN (RJ-45) : Connect to the drive.
Port	USB (Ver.2.0 compatible) : Connect to the PC as required.
Power Supply	Supplied from a PC or the drive
Operating System	Windows2000/XP
Memory	Memorizes the parameters for one drive.
Dimensions	30 (W) \times 80 (H) \times 20 (D) mm
Included	BJ-45 cable (1 m). USB cable (30 cm)

Note: 1. Drives must have identical software versions to copy parameters settings. 2. Requires a USB driver. Contact your YASKAWA representative. 3. Parameter copy function disabled when connected to a PC.

PC Cable (Model: WV103)

Cable to connect the drive to a PC with DriveWizard Plus or DriveWorksEZ installed.

Connection

Drive Communication Port

- Note: 1. The USB Copy Unit is required to when using a USB cable to connect the drive to a PC.
 - 2. DriveWizard Plus is a PC software package for managing parameters and functions in Yaskawa drives. To order this software, contact your YASKAWA representative. DriveWorksEZ is the software for creating custom application programs for the drive through visual programming. To order this software, contact our sales representative.

Model	Code No.
WV103	WV103

Specifications

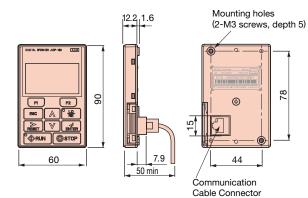
Item	Specifications
Connector	DSUB9P
Cable Length	3 m

Note1: You can also use a commercially available USB 2.0 cable (with A-B

connectors) for the USB cable. 2: No USB cable is needed to copy parameters to other drives.

Remote Digital Operator / Operator Extension Cable

Allows for remote operation. Includes a Copy function for saving drive settings.


Connection

Extension Cable

Dimensions (mm)

Remote Digital Operator

Item	Model	Code No.
LCD Operator	JVOP-180	100-041-022
LED Operator	JVOP-182	100-043-155

Operator Extension Cable

Model	Code No.
WV001 (1 m)	WV001
WV003 (3 m)	WV003

Note: Never use this cable for connecting the drive to a PC. Doing so may damage the PC.

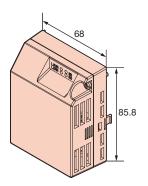
This bracket is required to mount the LCD or LED operator outside an enclosure panel.

Item	Code No. (Model)	Installation	Notes
Installation Support Set A	100-039-992 (EZZ020642A)	M4×10 truss head screw M3×6 pan head screw	For use with holes through the panel
Installation Support Set B	100-039-993 (EZZ020642B)	M4 nut M3×6 pan head screw	For use with panel mounted threaded studs

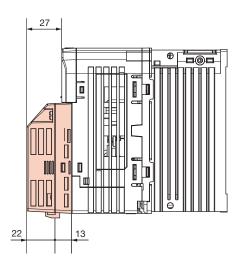
Note: If weld studs are on the back of the panel, use the Installation Support Set B.

Communication Interface Unit

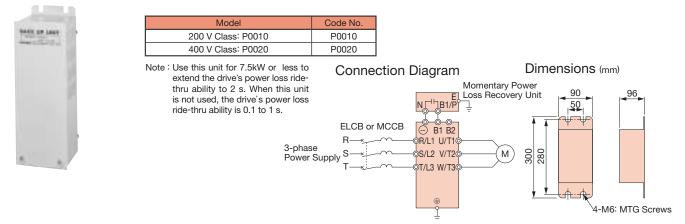
Contraction of the second	100112/07	Name	Model	Code No.
	and the	MECHATROLINK-I Option	SI-T3/V	100-049-420
A DECEMBER OF A	P. Down	MECHATROLINK-III Option	SI-ET3/V*1	100-106-675
the second se	V1000	CC-Link Option	SI-C3/V	100-038-064
(#111/G	C-Common and and	DeviceNet Option	SI-N3/V	100-039-409
	Contraction of the local division of the loc	CompoNet Option	SI-M3/V	100-060-128
discourse in the	Southern Manual	PROFIBUS-DP Option	SI-P3/V	100-038-409
V1000	C. S. LEWISCON, Concession, Name	CANopen Option	SI-S3/V	100-038-739
and the owner water of the owner of the owner of the owner of the owner owner owner owner owner owner owner own		EtherCAT	SI-ES3/V*2	
And and a second se		EtherNet/IP	SI-EN3/V*2	Available soon
Interview Statements		Modbus/TCP	SI-EM3/V*2	50011


E۶ IL

xample	of interfa	ace installa	ation

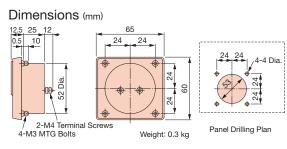

	31-03/V	100-030-0	104
DeviceNet Option	SI-N3/V	100-039-40	
CompoNet Option	SI-M3/V	100-060-128	
PROFIBUS-DP Option	SI-P3/V	100-038-409	
CANopen Option	SI-S3/V	100-038-7	739
EtherCAT SI-ES3/V*2			
EtherNet/IP	SI-EN3/V*2	Available soon	
Modbus/TCP SI-EM3/V*2			
 *1: MECHATROLINK-III SI-ET3/V is software versions PRG: S1023 Yaskawa for details. *2: Available soon 			

Dimensions (mm)


The interface increases total drive dimensions by 27 mm.

Example: CIMR-VA2A0004

Momentary Power Loss Recovery Unit (0.1 to 7.5 kW for 200 V/400 V class)



Frequency Meter/Current Meter

Model	Code No.
Scale-75 Hz full-scale: DCF-6A	FM000065
Scale-60/120 Hz full-scale: DCF-6A	FM000085
Scale-5 A full-scale: DCF-6A	DCF-6A-5A
Scale-10 A full-scale: DCF-6A	DCF-6A-10A
Scale-20 A full-scale: DCF-6A	DCF-6A-20A
Scale-30 A full-scale: DCF-6A	DCF-6A-30A
Scale-50 A full-scale: DCF-6A	DCF-6A-50A

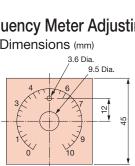
Note: DCF-6A is a 3 V, 1 mA frequency meter. The user may want to additionally install a frequency potentiometer to control output (shown below) or set parameter H4-02 to the appropriate output level (0 to 3 V).

Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model	Code No.
RV30YN20S 2 kΩ	RH000739
RV30YN20S 20 kΩ	FM000850

Dimensions (mm) 2.5±1 2.8±1 Dia M9 P 0.75 4.5 Dia Dia. 30±2 çġ 10 Dia 6 Dia. Panel Drilling Plan 17.5 20±1 Weight: 0.2 kg

Control Dial for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

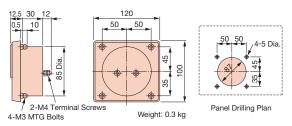


		Dimensions (mm)
Model	Code No.	
CM-3S	HLNZ-0036	
		29.9
		-2 -2 -2 -2 -2
		t. m <u>26.1</u> 32.8

Meter Plate for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

		Ľ
Model	Code No.	
NPJT41561-1	NPJT41561-1	
		_

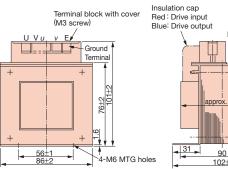
Shaft 6 Dia

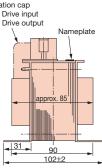


Output Voltage Meter

Model	Code No.
Scale-300 V full-scale (Rectification Type Class 2.5) : SCF-12NH	VM000481
Scale-600 V full-scale (Rectification Type Class 2.5) : SCF-12NH	VM000502

Dimensions (mm)


Potential Transformer



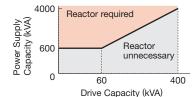
Model	Code No.
600 V meter for voltage transformer UPN-B 440/110 V (400/100 V)	100-011-486

For use with a standard voltage regulator. A standard voltage regulator may not match the drive output voltage. Select a regulator specifically designed for the drive output (100-011-486), or a voltmeter that does not use a transformer and offers direct read out. *:

Dimensions (mm)

Weight: 2.2 kg

Application Notes


Selection

Installing a Reactor

An AC or DC reactor can be used for the following:

- · to suppress harmonic current.
- to smooth peak current that results from capacitor switching.
- \cdot when the power supply is above 600 kVA.
- \cdot Use an AC reactor when also connecting a thyristor

converter to the same power supply system, regardless of the conditions of the power supply.

Drive Capacity

Make sure that the motor's rated current is less than the drive's output current. When running a specialized motor or more than one motor in parallel from a single drive, the capacity of the drive should be larger than 1.1 times of the total motor rated current.

Starting Torque

The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To get more starting torque, use a larger drive or increase both the motor and drive capacity.

Emergency Stop

When the drive faults out, a protective circuit is activated and drive output is shut off. This, however, does not stop the motor immediately. Some type of mechanical brake may be needed if it is necessary to halt the motor faster than the Fast Stop function is able to.

Options

She B1, B2, -, +1, and +2 terminals are used to connect optional devices. Connect only V1000-compatible devices.

Repetitive Starting/Stopping

Cranes (Hoists), elevators, punching presses, and other such applications with frequent starts and stops often exceed 150% of their rated current values. Heat stress generated from repetitive high current can shorten the lifespan of the IGBTs. The expected lifespan for the IGBTs is about 8 million start and stop cycles with a 4 kHz carrier frequency and a 150% peak current.

Yaskawa recommends lowering the carrier frequency, particularly when audible noise is not a concern. The user can also choose to reduce the load, increase the acceleration and deceleration times, or switch to a larger drive. This will help keep peak current levels under 150%.

Be sure to check the peak current levels when starting and stopping repeatedly during the initial test run, and make adjustments accordingly.

For crane-type applications taking the inching function in which the motor is quickly started and stopped, Yaskawa recommends the following to ensure motor torque levels and lower the drive:

- Select a large enough drive so that peak current levels remain below 150%.
- The drive should be one frame size larger than the motor.

Installation

Enclosure Panels

Keep the drive in a clean environment by either selecting an area free of airborne dust, lint, oil mist, corrosive gas, and flammable gas, or install the drive in an enclosure panel. Leave the required space between the drives to provide for cooling, and take steps to ensure that the ambient temperature remains within allowable limits. Keep flammable materials away from the drive. If the drive must be used in an area where it is subjected to oil mist and excessive vibration, protective designs are available. Contact Yaskawa for details.

Installation Direction

The drive should be installed upright as specified in the manual.

Settings

If using Open Loop Vector Control designed for permanent magnet motors, make sure that the proper motor code has been set to parameter E5-01 before performing a trial run.

Upper Limits

Because the drive is capable of running the motor at up to 400 Hz, be sure to set the upper limit for the frequency to control the maximum speed. The default setting for the maximum output frequency is 60 Hz.

DC Injection Braking

Motor overheat can result if there is too much current used during DC Injection Braking, or if the time for DC Injection Braking is too long.

Acceleration/Deceleration Times

Acceleration and deceleration times are affected by how much torque the motor generates, the load torque, and the inertia moment (GD²/4). Set a longer accel/decel time when Stall Prevention is enabled. The accel/ decel times are lengthened for as long as the Stall Prevention function is operating. For faster acceleration and deceleration, increase the capacity of the drive.

Compliance with Harmonic Suppression Guidelines

V1000 conforms to strict guidelines in Japan covering harmonic suppression for power conversion devices. Defined in JEM-TR201 and JEM-TR226 and published by the Japan Electrical Manufacturers' Association, these guidelines define the amount of harmonic current output acceptable for new installation. Contact your YASKAWA representative.

General Handling

Wiring Check

Never short the drive output terminals or apply voltage to output terminals (U/T1, V/T2, W/T3), as this can cause serious damage to the drive. Doing so will destroy the drive. Be sure to perform a final check of all sequence wiring and other connections before turning the power on. Make sure there are no short circuits on the control terminals (+V, AC, etc.), as this could damage the drive.

Magnetic Contactor Installation

Avoid switching a magnetic contactor on the power supply side more frequently than once every 30 minutes. Frequent switching can cause damage to the drive.

Inspection and Maintenance

After shutting off the drive, make sure the CHARGE light has gone out completely before preforming any inspection or maintenance. Residual voltage in drive capacitors can cause serious electric shock.

The heatsink can become quite hot during operation, and proper precautions should be taken to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down.

Transporting the Drive

Never steam clean the drive.

During transport, keep the drive from coming into contact with salts, fluorine, bromine and other such harmful chemicals.

Peripheral Devices

Installing a Ground Fault Interrupter or an MCCB Install an MCCB or a ground fault interrupter recommended by Yaskawa to the power supply side of the drive to protect internal circuitry. The type of MCCB needed depends on the power supply power factor (power supply voltage, output frequency, load characteristics, etc.). Sometimes a fairly large MCCB may be required due to the affects of harmonic current on operating characteristics. Those using a ground fault interrupter other than those recommended in this catalog, use one fitted for harmonic suppression measures (one designed specifically for drives). The rated current of the ground fault interrupter must be 200 mA or higher per drive unit. Select an MCCB with a rated capacity greater than the short-circuit current for the power supply. For a fairly large power supply transformer, a fuse can be added to the ground fault interrupter or MCCB in order to handle the short-circuit current level.

Magnetic Contactor for Input Power

Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary. The MC should be wired so that it opens when a fault output terminal is triggered.

Even though an MC is designed to switch following a momentary power loss, frequent MC use can damage other components. Avoid switching the MC more than once every 30 minutes. The MC will not be activated after a momentary power loss if using the operator keypad to run the drive. This is because the drive is unable to restart automatically when set for LOCAL. Although the drive can be stopped by using an MC installed on the power supply side, the drive cannot stop the motor in a controlled fashion, and it will simply coast to stop. If a braking resistor or dynamic braking unit has been installed, be absolutely sure to set up a sequence that opens the MC with a thermal protector switch connected to the braking resistor device.

Magnetic Contactor for Motor

As a general principle, the user should avoid opening and closing the magnetic contactor between the motor and the drive during run. Doing so can cause high peak currents and overcurrent faults. If magnetic contactors are used to bypass the drive by connecting the motor to the power supply directly, make sure to close the bypass only after the drive is stopped and fully disconnected from the motor. The Speed Search function can be used to start a coasting motor.

Use an MC with delayed release if momentary power loss is a concern.

Motor Thermal Over Load Relay Installation

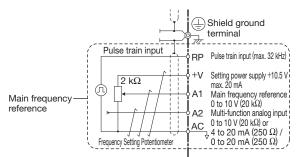
Although the drive comes with built in electrothermal protection to prevent damage from overheat, a thermal relay should be connected between the drive and each motor if running several motors from the same drive. For a multipole motor or some other type of non-standard motor, Yaskawa recommends using an external thermal relay appropriate for the motor. Be sure to disable the motor protection selection parameter (L1-01 = 0), and set the thermal relay or thermal protection value to 1.1 times the motor rated current listed on the motor nameplate.

When a high carrier frequency and long motor cables are used, nuisance tripping of the thermal relay may occur due to increased leakage current. To avoid this, reduce the carrier frequency or increase the tripping level of the thermal overload relay.

Improving the Power Factor

Installing a DC or AC reactor to the input side of the drive can help improve the power factor.

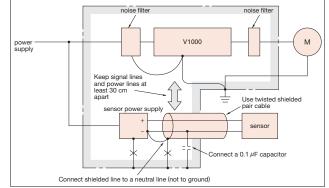
Refrain from using a capacitor or surge absorber on the output side as a way of improving the power factor, because high-frequency contents on the output side can lead to damage from overheat. This can also lead to problems with overcurrent.


Radio Frequency Interference

Drive output contains high-frequency contents that can affect the performance of surrounding electronic instruments such as an AM radio. These problems can be prevented by installing a noise filter, as well as by using a properly grounded metal conduit to separate wiring between the drive and motor.

Wire Gauges and Wiring Distance

Motor torque can suffer as a result of voltage loss across a long cable running between the drive and motor, especially when there is low frequency output. Make sure that a large enough wire gauge is used.


The optional LCD operator requires a proprietary cable to connect to the drive. If an analog signal is used to operate the drive via the input terminals, make sure that the wire between the analog operator and the drive is no longer than 50 m, and that it is properly separated from the main circuit wiring. Use reinforced circuitry (main circuit and relay sequence circuitry) to prevent inductance from surrounding devices. To run the drive with a frequency potentiometer via the external terminals, use twisted shielded pair cables and ground the shield.

Counteracting Noise

Because V1000 is designed with PWM control, a low carrier frequency tends to create more motor flux noise than using a higher carrier frequency. Keep the following point in mind when considering how to reduce motor noise:

- Lowering the carrier frequency (C6-02) minimizes the effects of noise.
- A line noise filter can be effective in reducing the affects on AM radio frequencies and poor sensor performance. See "Options and Peripheral Devices" on page 28.
- Make sure the distance between signal and power lines is at least 10 cm (up to 30 cm is preferable), and use twisted pair cable to prevent induction noise form the drive power lines.

<Provided by JEMA>

Leakage Current

High-frequency leakage current passes through stray capacitance that exists between the power lines to the drive, ground, and the motor lines. Consider using the following peripheral devices to prevent problems with leakage current.

	Problem	Solution
Ground Leakage Current	MCCB is mistakenly triggered	 Lower the carrier frequency set to parameter C6-02. Try using a component designed to minimize harmonic distortion for the MCCB such as the NV series by Mitsubishi.
Current Leakage Between Lines	Thermal relay connected to the external terminals is mistakenly triggered by harmonics in the leakage current	 Lower the carrier frequency set to parameter C6-02. Use the drive's built-in thermal motor protection function.

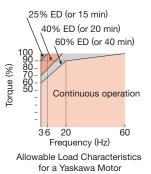
The following table shows the guidelines for the set value of the carrier frequency relative to the wiring distance between the drive and the motor when using V/f control.

When Open Loop Vector Control or PM Open Loop Vector Control is used and the wiring distance is 50 m to 100 m, set the carrier frequency to 2 kHz.

Wiring Distance*	50 m or less	100 m or less	Greater than 100 m
C6-02:			1, 7 to Auto
Carrier Frequency Selection	(15 kHz or less)	(5 kHz or less)	(2 kHz or less)

*: When a single drive is used to run multiple motors, the length of the motor cable should be calculated as the total distance between the drive and each motor.

When the wiring distance exceeds 100 m, use the drive observing the following conditions.


- \cdot To start a coasting motor
 - a) Use the current detection type (b3-24=0) when using the speed search function, or
 - b) Set the DC injection braking time at start (b2-03=0.01

to 10.00 sec) to stop a coasting motor and restart it. More than one synchronous motor cannot be connected to a single drive. The maximum wiring distance between the drive and the synchronous motor must be 100 m.

Notes on Motor Operation

Using a Standard Motor

Low Speed Range There is a greater amount of loss when operating a motor using an drive than when running directly from line power. With a drive, the motor can become quite hot due to the poor ability to cool the motor at low speeds. The load

torque should be reduced accordingly at low speeds. The figure above shows the allowable load characteristics for a Yaskawa standard motor. A motor designed specifically for operation with a drive should be used when 100% continuous torque is needed at low speeds.

Insulation Tolerance

Consider voltage tolerance levels and insulation in applications with an input voltage of over 440 V or particularly long wiring distances.

High Speed Operation

Problems may occur with the motor bearings and dynamic balance in applications operating at over 60 Hz. Contact Yaskawa for consultation.

Torque Characteristics

Torque characteristics differ when operating directly from line power. The user should have a full understanding of the load torque characteristics for the application.

Vibration and Shock

V1000 lets the user choose between high carrier PWM control and low carrier PWM. Selecting high carrier PWM can help reduce motor oscillation. Keep the following points in mind when using high carrier PWM: (1) Resonance

Take particular caution when using a variable speed drive for an application that is conventionally run from line power at a constant speed. Shockabsorbing rubber should be installed around the base of the motor and the Jump Frequency selection should be enabled to prevent resonance.

(2) Any imperfection on a rotating body increases vibration with speed

Caution should be taken when operating above the motor rated speed.

Audible Noise

Noise created during run varies by the carrier frequency setting. Using a high carrier frequency creates about as much noise as running from line power. Operating above the rated r/min (i.e., above 60 Hz), however, can create unpleasant motor noise.

Using a Synchronous Motor

- Please contact us for consultation when using a synchronous motor not already approved by Yaskawa.
- Even when the power has been shut off for a drive running a PM motor, voltage continues to be generated at the motor terminals while the motor coasts to stop. Take the precautions described below to prevent shock and injury:
 - Applications where the machine can still rotate even though the drive has fully stopped should have a low voltage manual load switch installed to the output side of the drive. (Yaskawa recommends the AICUT LB Series by AICHI Electric Works Co., Ltd.)
 - Do not apply to a load that could potentially rotate the motor faster than the maximum allowable r/min even when the drive has been shut off.
 - Wait at least one minute after opening the low voltage manual load switch on the output side before inspecting the drive or performing and maintenance.
 - Do not open a close the low voltage manual load switch while the motor is running, as this can damage the drive.
 - To close the low voltage manual load switch connected to a coasting motor, first turn on the power to the drive and make sure that the drive has stopped.
- Synchronous motors cannot be started directly from line power. Applications that requiring line power to start should use an induction motor with the drive.
- A single drive is not capable of running multiple synchronous motors at the same time. Use a standard induction motor for such setups.
- At start, a synchronous motor may rotate slightly in the opposite direction of the Run command depending on parameter settings and motor type.
- Uses derated torque of 50% less than starting torque. Set up the motor with the drive after verifying the 53

starting torque, allowable load characteristics, impact load tolerance, and speed control range.

- Even with a braking resistor, braking torque is less than 125% when running between 20% to 100% speed, and falls to less than half the braking torque when running at less than 20% speed.
- There is no torque control available, and torque limits cannot be set. Consequently, synchronous motors are not appropriate for applications that operate at low speeds (less than 10% of the rated speed) or experience sudden changes in speed. Such applications are better suited for induction motors or servo drives.
- The allowable load inertia moment is 50 times less than the motor inertia moment. Contact Yaskawa concerning applications with a larger inertia moment.
- When using a holding brake, release the brake prior to starting the motor. Failure to set the proper timing can result in speed loss. Not for use with conveyor, transport, or hoist type applications.
- To restart a coasting motor rotating at over 120 Hz, use the Short Circuit Braking* function to first bring the motor to a stop. Short Circuit Braking requires a special braking resistor.

Speed Search can be used to restart a coasting motor rotating slower than 120 Hz. If the motor cable is relatively long, however, the motor should instead be stopped using Short Circuit Braking and then restarted.

*: Short Circuit Braking creates a short-circuit in the motor windings to forcibly stop a coasting motor.

Applications with Specialized Motors

Multi-pole Motor

Because the rated current will differ from a standard motor, be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. If a regenerative overvoltage fault occurs or if overcurrent protection is triggered, the motor will coast to stop.

Submersible Motor

Because motor rated current is greater than a standard motor, select the drive capacity accordingly. Be sure to use a large enough motor cable to avoid decreasing the maximum torque level on account of voltage drop caused by a long motor cable.

Explosion-proof Motor

Both the motor and drive need to be tested together to be certified as explosion-proof. The drive is not for explosion proof areas.

Geared Motor

Continuous operation specifications differ by the manufacturer of the lubricant. Due to potential problems of gear damage when operating at low speeds, be sure to select the proper lubricant. Consult with the manufacturer for applications that require speeds greater than the rated speed range of the motor or gear box.

Single-phase Motor

Variable speed drives are not designed for operating single phase motors. Using a capacitor to start the motor causes high-frequency current to flow into the capacitors, potentially causing damage. A split-phase start or a repulsion start can end up burning out the starter coils because the internal centrifugal switch is not activated. V1000 is for use only with 3-phase motors.

Uras Vibrator

Uras vibrator is a vibration motor that gets power from centrifugal force by rotating unbalanced weights on both ends of the shaft. Make the following considerations when selecting a drive for use with an Uras vibrator:

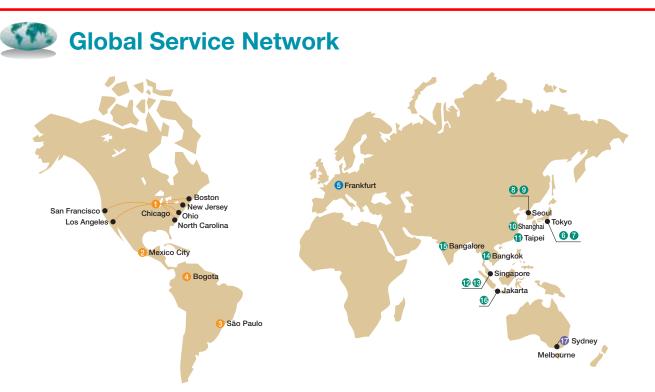
- Uras vibrator should be used within the drive rated frequency
- (2) Use V/f Control
- (3) Increase the acceleration time five to fifteen times longer than would normally be used due to the high amount of load inertia of an Uras vibrator Note: A drive with a different capacity must be selected if the acceleration time is less than 5 s.
- (4) Drive may have trouble starting due to undertorque that results from erratic torque (static friction torque at start)

Motor with Brake

Caution should be taken when using a drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels. A separate power supply should be installed for the motor brake. Motors with a built-in brake tend to generate a fair amount of noise when running at low speeds.

Power Driven Machinery (decelerators, belts, chains, etc.)

Continuous operation at low speeds wears on the lubricating material used in gear box type systems to accelerate and decelerate power driven machinery. Caution should also be taken when operating at speeds above the rated machine speed due to noise and shortened performance life.


YASKAWA AC Drive Series

	Name	Feature		Capacity Range (kW) 0.1 1 10 100 300 630	Outline
General Purpose	J1000	Compact V/f Control AC Drive	Three-Phase 200 V Class Single-Phase 200 V Class Three-Phase 400 V Class	0.1 5.5 0.1 2.2 0.2 5.5	Ultra-small body enables side-by-side installation. Compact design of enclosure panel Easy operation with the Potentiometer Option Unit The noise-suppressing Swing PWM system reduces harsh sound. The full-range fully-automatic torque boost function provides high torque output. (100%/1.5 Hz, 150%/3 Hz) The Stall Prevention function and the momentary power loss ride-thru ensure continuous operation, regardless of load/power supply fluctuations or momentary power loss. The Overexcitation braking function enables rapid braking, without using a braking resistor.
	V1000	Compact Vector Control AC Drive	Three-Phase 200 V Class Single-Phase 200 V Class Three-Phase 400 V Class	0.1 18.5 0.1 3.7 0.2 18.5	Small body and high performance (Current vector control) For both induction motors and synchronous motors (IPMM/SPMM) High starting torque: 200%/0.5 Hz* Torque limit function * At Heavy Duty rating, for induction motors with 3.7 kW or lower Application-specific function selection for simplified optimum setup Easy maintenance using the detachable terminal block with the parameter backup function
	A1000	Advanced Vector Control AC Drive	Three-Phase 200 V Class Three-Phase 400 V Class	0.4 110	For both induction motors and synchronous motors (IPMM/SPMM). High starting torque IPM motor without a motor encoder: 0 r/min 200% torque Application preset function selection for simplified optimum setup Easy maintenance using the detachable terminal block with the parameter backup function
	Varispeed G7	General-purpose Inverter With Advanced Vector Control Minimal Noise	Three-Phase 200 V Class Three-Phase 400 V Class	0.4 110	The 400 V class uses 3-level control for a more perfect output waveform Open Loop Vector control ensures 150% or higher torque during operation at 0.3 Hz. Flux Vector Control provides a high torque of 150% at zero speed. Easy maintenance and inspection using the detachable control circuit terminals and the detachable cooling fan. Software for various applications (for crane, hoist, etc.) The Auto-Tuning function upgrades all types of general motors to be
	U1000	Low Harmonics Regenerative Matrix Converter	Three-Phase 200 V Class Three-Phase	5.5 55*	 compatible with high-performance drives. Drastically reduced power supply harmonics and improved harmonics environment. Power regeneration function with even greater energy efficiency. All-in-one design accomplished reduced wiring and saving space. Motor drive state-of-the-art technology, induction motor and, of course, synchronous motor drive are also possible. Commercial power supply can be switched without peripheral phase detectors and contactors.
	ECOiPM Drive	Compact and Energy Efficiency Drives	400 V Class Three-Phase 200 V Class Three-Phase 400 V Class	0.4 15	 The visual programming function DriveWorksEZ is installed as standard, easily customized, and can be freely used on a PC. Grade higher than IE3 efficiency class saves energy during operation. V1000 drives combined with compact ECOiPM motors make more compact and lighter drive systems. Less maintenance because bearing grease life is approx. three times longer compared to use with induction motors.
	V1000pico Drive	Super Compact and Environmentally Drives	Three-Phase 200 V Class	0.1 3.7	 Improved reliability with elimination of an encoder of precision device V1000 drives combined with super compact V1000pico motors make more compact and lighter drive systems. Applicable in locations subject to water jets or abrasive powder with its protective enclosure rated IP65 or higher. Improved reliability with elimination of an encoder of precision device Use of V1000 drives, which can control not only induction motors bu also synchronous motors, brings the uniformity of your stock.
Special Use	L1000A Ele	Elevator Applications Three-Pr 400 V Cl	Three-Phase 200 V Class	1.5	 Cutting-edge drive technology allows L1000A to run a newly installed gearless synchronous motor, or a refurbished geared induction moto This minimizes equipment required for your application. Interfaces to match gearless, synchronous motors and every type of absolute encoder. Even without a load sensor, high-performance torque compensation and high-resolution absolute encoder eliminate rollback when the
			Three-Phase 400 V Class	1.5 110	 brake is released. Output interrupt Satisfies safety requirements and Ensures a reliable elevator system. Rescue Operation switches to backup battery or UPS in case of a power outage. All standard models are compliant with the Europe's RoHS directive enset selecting a model, make sure that the rated output current is

*: Models with a capacity of 260 kW or more are being developed. Units are displayed in kW. When selecting a model, make sure that the rated output current is higher than the motor rating current.

Region	Service Area	Service Location	Service Agency	Telephone/Fax	
North America	U.S.A.	Chicago (HQ) Los Angeles San Francisco New Jersey Boston Ohio North Carolina	1) YASKAWA AMERICA INC.	Headqua ନ୍ଦ FAX	arters +1-847-887-7000 +1-847-887-7310
	Mexico	Mexico City	ØPILLAR MEXICANA. S.A. DE C.V.	ත FAX	+52-555-660-5553 +52-555-651-5573
South	South America	São Paulo	8 YASKAWA ELÉTRICO DO BRASIL LTDA.	ත FAX	+55-11-3585-1100 +55-11-5581-8795
America	Colombia	Bogota	ØVARIADORES LTD.A.	ත FAX	+57-1-428-4225 +57-1-428-2173
Europe	Europe, South Africa			ත FAX	+49-6196-569-300 +49-6196-569-398
		Tokyo, offices nationwide	YASKAWA ELECTRIC CORPORATION (Manufacturing, sales)	ත FAX	+81-3-5402-4502 +81-3-5402-4580
	Japan		YASKAWA ELECTRIC ENGINEERING CORPORATION (After-sales service)	ත FAX	+81-4-2931-1810 +81-4-2931-1811
		South Korea Seoul	³ YASKAWA ELECTRIC KOREA CORPORATION	ත FAX	+82-2-784-7844 +82-2-784-8495
	South Korea		YASKAWA ENGINEERING KOREA CORPORATION	ත FAX	+82-2-3775-0337 +82-2-3775-0338
	China	Beijing, Guangzhou, Shanghai	10 YASKAWA ELECTRIC (CHINA) CO., LTD.	ත FAX	+86-21-5385-2200 +86-21-5385-3299
Asia	Taiwan Taipei	Taipei	YASKAWA ELECTRIC TAIWAN CORPORATION	ත FAX	+886-2-2502-5003 +886-2-2505-1280
	Singapore Sing	0	19 YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.	ත FAX	+65-6282-3003 +65-6289-3003
		Singapore	18 YASKAWA ENGINEERING ASIA-PACIFIC PTE. LTD.	ත FAX	+65-6282-1601 +65-6382-3668
	Thailand	Bangkok	⁽¹⁾ YASKAWA ELECTRIC (THAILAND) CO., LTD.	ත FAX	+66-2693-2200 +66-2693-4200
	India	Bangalore	19 YASKAWA INDIA PRIVATE LIMITED	ත FAX	+91-80-4244-1900 +91-80-4244-1901
	Indonesia	Jakarta	18 PT. YASKAWA ELECTRIC INDONESIA	ත FAX	+62-21-2982-6470 +62-21-2982-6471
Oceania	Australia	Sydney (HQ) Melbourne	(PROBOTIC AUTOMATION PTY. LTD.	Headqua 2 FAX	arters +61-2-9748-3788 +61-2-9748-3817

/10(

DRIVE CENTER (INVERTER PLANT)

2-13-1, Nishimiyaichi, Yukuhashi, Fukuoka, 824-8511, Japan Phone 81-930-25-3844 Fax 81-930-25-4369 http://www.yaskawa.co.jp

YASKAWA ELECTRIC CORPORATION

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan Phone 81-3-5402-4502 Fax 81-3-5402-4580 http://www.yaskawa.co.jp

YASKAWA AMERICA, INC. 2121, Norman Drive South, Waukegan, IL 60085, U.S.A. Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310 http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil Phone 55-11-3585-1100 Fax 55-11-3585-1187 http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

185, Hauptstraβe, Eschborn, 65760, Germany Phone 49-6196-569-300 Fax 49-6196-569-398 http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

PF, Kyobo Securities Bldg., 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea Phone 82-2-784-7844 Fax 82-2-784-8495 http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151, Lorong Chuan, #04-02A, New Tech Park 556741, Singapore Phone 65-6282-3003 Fax 65-6289-3003 http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.

252/125-126, 27th Floor, Muang Thai-Phatra Tower B, Rachadapisek Road, Huaykwang, Bangkok, 10310, Thailand Phone 66-2693-2200 Fax 66-2693-4200 http://www.yaskawa.co.th

PT. YASKAWA ELECTRIC INDONESIA

Secure Building-Gedung B Lantai Dasar & Lantai 1 Jl. Raya Protokol Halim Perdanakusuma, Jakarta 13610, Indonesia Phone 62-21-2982-6470 Fax 62-21-2982-6471 http://www.yaskawa.co.id/

YASKAWA ELECTRIC (CHINA) CO., LTD.

22F, One Corporate Avenue, No.222, Hubin Road, Shanghai, 200021, China Phone 86-21-5385-2200 Fax 86-21-5385-3299 http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No.1 East Chang An Ave.,

Dong Cheng District, Beijing, 100738, China Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei, 104, Taiwar Phone 886-2-2502-5003 Fax 886-2-2505-1280 http://www.yaskawa-taiwan.com.tw

YASKAWA INDIA PRIVATE LIMITED

#17/A, Electronics City, Hosur Road, Bangalore, 560 100 (Karnataka), India Phone 91-80-4244-1900 Fax 91-80-4244-1901 http://www.yaskawaindia.in

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2007-2015 YASKAWA ELECTRIC CORPORATION. All rights reserved.

LITERATURE NO. KAEP C710606 08G Published in Japan January 2015 07-8 <a>> 0 15-1-17